Generalized Parton **Distributions** from Lattice QCD

Shohini Bhattacharya RIKEN BNL 19th October 2023

Snapshots of the nucleons

Snapshots of the nucleons

Nucleon tomography (mapping partonic distributions) is one of the major goals of the EIC

Lattice calculations can serve as a valuable complement **r** to the ongoing efforts at the EIC

6

What are Generalized Parton Distributions?

GPD correlator for quarks: Graphical representation

Definition of GPD correlator for quarks:

$$
F^{[\Gamma]}(x,\Delta;\lambda,\lambda')=\frac{1}{2}\int\frac{dz^-}{2\pi}e^{ik\cdot z}\langle p';\lambda'|\bar{\psi}(-\tfrac{z}{2})\,\Gamma\,\mathcal{W}(-\tfrac{z}{2},\tfrac{z}{2})\psi(\tfrac{z}{2})|p;\lambda\rangle\bigg|_{z^+=0,\vec{z}_\perp=\vec{0}_\perp}
$$

What are Generalized Parton Distributions?

What are Generalized Parton Distributions?

Definition of GPD correlator for quarks:

$$
F^{[\Gamma]}(x,\Delta;\lambda,\lambda')=\frac{1}{2}\int\frac{dz^-}{2\pi}e^{ik\cdot z}\langle p';\lambda'|\bar{\psi}(-\sum_{\bar{z},\bar{z}}\sum_{\bar{z}}\bar{\psi}(\bar{z})|p;\lambda\rangle\Big|_{z^+=0,\vec{z}_\perp=\vec{0}_\perp}
$$

We have numerous compelling reasons to engage in GPD studies!

Physical processes sensitive to GPDs

Courtesy: Hyon-Suk Jo, KPS Meeting

No access to x-dependence of GPDs

Physical processes sensitive to GPDs

Physical processes sensitive to GPDs

 $|_{z^+=\vec{z}_{\perp}=0}$

Light-cone (standard) correlator $-1 \le x \le 1$

 $F^{[\Gamma]}(x,\Delta;\lambda,\lambda') \;\;\;=\;\;\; \frac{1}{2}\int \frac{dz^-}{2\pi} e^{ik\cdot z}$ $\times \langle p'; \lambda' | \bar \psi(-\tfrac z2) \, \Gamma \, \mathcal{W}(-\tfrac z2, \tfrac z2) \psi(\tfrac z2) | p; \lambda \rangle \Big|$

• **Time dependence :**
$$
z^0 = \frac{1}{\sqrt{2}}(z^+ + z^-) = \frac{1}{\sqrt{2}}z
$$

Cannot be computed on Euclidean lattice \bullet

Calculating Parton Distributions in Lattice QCD

"Physical" distributions

Parton Physics on Euclidean Lattice

Xiangdong $Ji^{1,2}$

¹INPAC, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China ²Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, Maryland 20742, USA (Dated: May 8, 2013)

Abstract

I show that the parton physics related to correlations of quarks and gluons on the light-cone can be studied through the matrix elements of frame-dependent, equal-time correlators in the large momentum limit. This observation allows practical calculations of parton properties on an

"Auxiliary" distributions

Correlator for quasi-GPDs (Ji, 2013) $-\infty \leq x \leq \infty$ $F_{\rm Q}^{[\Gamma]}(x,\Delta;\lambda,\lambda';P^3) = \frac{1}{2}\int\frac{dz^3}{2\pi}e^{ik\cdot z}$ $\times \langle p', \lambda' | \bar \psi(-\frac{z}{2}) \, \Gamma \, \mathcal{W}_Q(-\frac{z}{2}, \frac{z}{2}) \psi(\frac{z}{2}) | p, \lambda \rangle$ $z^0 = \vec{z}$, $= 0$ Non-local correlator depending on position z^3 Can be computed on Euclidean lattice

Calculating Parton Distributions in Lattice QCD

?

 \bullet

"Auxiliary" distributions

Correlator for quasi-GPDs (Ji, 2013) $-\infty \leq x \leq \infty$ $F_{\rm Q}^{[\Gamma]}(x,\Delta;\lambda,\lambda';P^3) \quad = \quad {1\over 2} \int {dz^3\over 2\pi} e^{ik\cdot z}$ $\times \langle p',\lambda' | \bar \psi(-\tfrac{z}{2}) \, \Gamma \, \mathcal{W}_Q(-\tfrac{z}{2},\tfrac{z}{2}) \psi(\tfrac{z}{2}) |p,\lambda\rangle\bigg|_{z^0=\vec z_\perp=0}$ Non-local correlator depending on position z^3 **Can be computed on Euclidean lattice**

Essence of the quasi-distribution approach (Example: PDF)

Light-cone PDF:

Essence of the quasi-distribution approach (Example: PDF)

Light-cone PDF:

Quasi PDF:

$$
f_1(x, p^3) = \frac{\alpha_s C_F}{2\pi} \left\{ \begin{aligned} (1-x) \ln \frac{x}{x-1} + 1 & x > 1 \\ (1-x) \ln \frac{4(1-x)p_3^2}{m_g^2} + x & 0 < x < 1 \\ (1-x) \ln \frac{x-1}{x} - 1 & x < 0 \end{aligned} \right\}
$$

27

Essence of the quasi-distribution approach (Example: PDF)**Light-cone PDF:** $\begin{array}{|c|c|c|c|c|}\hline \begin{array}{c} \kappa \uparrow & & \\ \hline \hline \rule{0mm}{3mm} & & \\ \hline \rule{0mm}{3mm} & & \hline \end{array} & \begin{array}{c} \hline \rule{0mm}{3mm} & & \\ \hline \rule{0mm}{3mm} & & \hline \rule{0mm}{3mm} & \\ \hline \rule{0mm}{3mm} & & \hline \end{array} & \begin{array}{c} \hline \rule{0mm}{3mm} & & \\ \hline \rule{0mm}{3mm} & & \hline \rule{0mm}{3mm} & \\ \hline \rule{0mm}{3mm} & & \hline \end{array$ $(1a)$ $\int_0^\infty dk_\perp$ **Quasi PDF:** Support outside physical region $0 < x < 1$ al region $0 < x < 1$
 $f_1(x, p^3) = \frac{\alpha_s C_F}{2\pi} \begin{cases} (1-x) \ln \frac{x}{x-1} + 1 & x > 1 \\ (1-x) \ln \frac{4(1-x)p_3^2}{m_g^2} + x & 0 < x < 1 \\ (1-x) \ln \frac{x-1}{x} - 1 & x < 0 \end{cases}$

Calculating Parton Distributions in Lattice QCD

Calculating Parton Distributions in Lattice QCD

Lattice QCD calculations of x-dependence of PDFs & related quantities using Euclidean correlators:

Compilation by Cichy, 2110.07440

First Lattice QCD results of the x-dependent GPDs

As tincreases, the distribution flattens

First Lattice QCD results of the x-dependent GPDs

Chiral-even axial twist-3 GPDs of the proton from lattice QCD

Shohini Bhattacharya^{1,2}, Krzysztof Cichy³, Martha Constantinou¹, Jack Dodson¹, Andreas Metz¹, Aurora Scapellato¹, Fernanda Steffens⁴

Why twist 3?

- **Can be as sizeable as twist 2**
- **Contain information about quark-gluon-quark correlations inside hadrons …**

But little hiccup...

Perform Lattice QCD calculations of GPDs in asymmetric frames:

- **Reduction in computational cost**
- Access to broad range of t (enabling creation of high-resolution partonic maps)

- **Lorentz covariant formalism for calculating quasi-GPDs in any frame**
- **Elimination of power corrections potentially allowing faster convergence to light-cone GPDs**

Novel parameterization of position-space matrix element: (Inspired from Meissner, Metz, Schlegel, 2009)

$$
F^{\mu}(z, P, \Delta) = \bar{u}(p_f, \lambda') \left[\frac{P^{\mu}}{m} \mathbf{A}_1 + m z^{\mu} \mathbf{A}_2 + \frac{\Delta^{\mu}}{m} \mathbf{A}_3 + im \sigma^{\mu z} \mathbf{A}_4 + \frac{i \sigma^{\mu \Delta}}{m} \mathbf{A}_5 + \frac{P^{\mu} i \sigma^{z \Delta}}{m} \mathbf{A}_6 + m z^{\mu} i \sigma^{z \Delta} \mathbf{A}_7 + \frac{\Delta^{\mu} i \sigma^{z \Delta}}{m} \mathbf{A}_8 \right] u(p_i, \lambda)
$$

Vector operator $F^{\mu}_{\lambda, \lambda'} = \langle p', \lambda' | \bar{q}(-z/2) \gamma^{\mu} q(z/2) |p, \lambda \rangle \Big|_{z=0, \vec{z}_{\perp} = \vec{0}_{\perp}}$

Features:

Example

- **8** linearly-independent Dirac structures
- **8** Lorentz-invariant (frame-independent) amplitudes $A_i \equiv A_i(z \cdot P, z \cdot \Delta, t = \Delta^2, z^2)$

Example

Novel parameterization of position-space matrix element: (Inspired from Meissner, Metz, Schlegel, 2009)

Lorentz covariant formalism

Calculate quasi-GPD in symmetric frame through matrix elements of asymmetric frame

56

Major theoretical advances:

• **Lorentz covariant formalism for calculating quasi-GPDs in any frame**

• **Elimination of power corrections potentially allowing faster convergence to light-cone GPDs**

Relations between GPDs & amplitudes

Light-cone GPD: (Lorentz-invariant)

$$
H(z \cdot P^{s/a}, z \cdot \Delta^{s/a}, (\Delta^{s/a})^2) = A_1 + \frac{\Delta^{s/a} \cdot z}{P^{s/a} \cdot z} A_3
$$

Quasi-GPD: (Symmetric frame)

$$
H_{\mathcal{Q}(0)}^{s}(z, P^{s}, \Delta^{s}) = A_{1} + \frac{\Delta^{0,s}}{P^{0,s}} A_{3} - \frac{m^{2} \Delta^{0,s} z^{3}}{2P^{0,s} P^{3,s}} A_{4} + \left[\frac{(\Delta^{0,s})^{2} z^{3}}{2P^{3,s}} - \frac{\Delta^{0,s} \Delta^{3,s} z^{3} P^{0,s}}{2(P^{3,s})^{2}} - \frac{z^{3} (\Delta_{\perp}^{s})^{2}}{2P^{3,s}} \right] A_{6}
$$

+
$$
\left[\frac{(\Delta^{0,s})^{3} z^{3}}{2P^{0,s} P^{3,s}} - \frac{(\Delta^{0,s})^{2} \Delta^{3,s} z^{3}}{2(P^{3,s})^{2}} - \frac{\Delta^{0,s} z^{3} (\Delta_{\perp}^{s})^{2}}{2P^{0,s} P^{3,s}} \right] A_{8},
$$

Relations between GPDs & amplitudes

Light-cone GPD: (Lorentz-invariant)

$$
H(z \cdot P^{s/a}, z \cdot \Delta^{s/a}, (\Delta^{s/a})^2) = A_1 + \frac{\Delta^{s/a} \cdot z}{P^{s/a} \cdot z} A_3
$$

Contamination from additional amplitudes or explicit power corrections

Relations between GPDs & amplitudes

<u>Main finding</u>

Schematic structure of (operator-level) Lorentz-invariant definition of quasi-GPD:

 $H_{\rm O} \rightarrow c_0 \langle \bar{\psi} \gamma^0 \psi \rangle + c_1 \langle \bar{\psi} \gamma^1 \psi \rangle + c_2 \langle \bar{\psi} \gamma^2 \psi \rangle$

Quast that quasi-GPD has the

Feature:

• **Lorentz-invariant definition of quasi-GPDs may converge faster**

Lattice QCD calculations of x-dependence of PDFs & related quantities using Euclidean correlators:

Compton amplitude in Lattices

Generalised parton distributions from the off-forward Compton amplitude in lattice $\rm QCD$

> A. Hannaford-Gunn,¹ K. U. Can,¹ R. Horsley,² Y. Nakamura,³ H. Perlt,⁴ P. E. L. Rakow,⁵ G. Schierholz,⁶ H. Stüben,⁷ R. D. Young,¹ and J. M. Zanotti¹ (CSSM/QCDSF/UKQCD Collaborations)

Example: Forward Compton amplitude

 $\frac{Q}{2}, \frac{1}{Q^2}$ M_N^2

Courtesy: Utku Can

Deep Inelastic Scattering (DIS)

DIS & Hadronic Tensor:

Compton amplitude in Lattices

Forward Compton amplitude:

$$
T_{\mu\nu}(p,q) = i \int d^4 z \, e^{iq \cdot z} \rho_{ss'} \langle p, s' | \mathcal{F} \{J_\mu(z)J_\nu(0)\} | p, s \rangle
$$

=
$$
\left(-g_{\mu\nu} + \frac{q_\mu q_\nu}{q^2}\right) \underbrace{\mathcal{F}_1(\omega, Q^2)}_{\text{Compton Structure Functions (SF)}} + \left(p_\mu - \frac{p \cdot q}{q^2} q_\mu\right) \underbrace{\left(p_\nu - \frac{p \cdot q}{q^2} q_\nu\right) \underbrace{\mathcal{F}_2(\omega, Q^2)}_{\text{P} \cdot q}}_{\text{Compton Structure Functions (SF)}}
$$

Same Lorentz decomposition as the Hadronic tensor

Compton amplitude in Lattices

Forward Compton amplitude:

$$
T_{\mu\nu}(p,q) = i \int d^4 z \, e^{iq \cdot z} \rho_{ss'} \langle p, s' | \mathcal{T} \{J_\mu(z)J_\nu(0)\} | p, s \rangle
$$

=
$$
\left(-g_{\mu\nu} + \frac{q_\mu q_\nu}{q^2}\right) \left(\mathcal{F}_1(\omega, Q^2)\right) + \left(p_\mu - \frac{p \cdot q}{q^2} q_\mu\right) \left(p_\nu - \frac{p \cdot q}{q^2} q_\nu\right) \left(\mathcal{F}_2(\omega, Q^2)\right)
$$

Compton structure Functions (SF)

 $\text{Im}\,\omega$

 $\omega = x^{-1}$

Dispersion relations connecting Compton SFs to DIS SFs:

$$
\mathcal{F}_1(\omega, Q^2) - \mathcal{F}_1(0, Q^2) = 2\omega^2 \int_0^1 dx \frac{2x F_1(x, Q^2)}{1 - x^2 \omega^2 - i\epsilon}
$$
\n
$$
\mathcal{F}_2(\omega, Q^2) = 4\omega \int_0^1 dx \frac{F_2(x, Q^2)}{1 - x^2 \omega^2 - i\epsilon}
$$
\n
$$
\mathcal{F}_2(\omega, Q^2) = 4\omega \int_0^1 dx \frac{F_2(x, Q^2)}{1 - x^2 \omega^2 - i\epsilon}
$$
\nCompton Amplitude is an analytic function in the unphysical region $|\omega_0| < 1$

\nConversy: Utku Can
Compton amplitude in Lattices

Forward Compton amplitude:

$$
T_{\mu\nu}(p,q) = i \int d^4 z \, e^{iq \cdot z} \rho_{ss'} \langle p, s' | \mathcal{F} \{J_\mu(z)J_\nu(0)\} | p, s \rangle
$$

= $\left(-g_{\mu\nu} + \frac{q_\mu q_\nu}{q^2}\right) \left(\mathcal{F}_1(\omega, Q^2)\right) + \left(p_\mu - \frac{p \cdot q}{q^2} q_\mu\right) \left(p_\nu - \frac{p \cdot q}{q^2} q_\nu\right) \left(\mathcal{F}_2(\omega, Q^2)\right)$
\n
$$
\longrightarrow \text{Compton Structure Functions (SF)}.
$$

Compton amplitude approach gives access to moments of DIS SFs:

Example:

$$
\mathcal{F}_2(\omega, Q^2) = \sum_{n=1}^{\infty} 4\omega^{2n-1} M_{2n}^{(2)}(Q^2), \text{ where } M_{2n}^{(2,L)}(Q^2) = \int_0^1 dx \, x^{2n-2} F_{2,L}(x, Q^2)
$$

Compton amplitude in Lattices

Summary

- **Tremendous recent activity in studying parton structure of hadrons in lattice QCD through Euclidean correlators**
- **Impact of approach(es) largest where experiments are difficult → GPDs**

Summary

- **Tremendous recent activity in studying parton structure of hadrons in lattice QCD through Euclidean correlators**
- **Impact of approach(es) largest where experiments are difficult → GPDs Overview of Euclidean-correlator approaches**

Backup slides

What are Generalized Parton Distributions? Example: At twist 2 there are 8 GPDs Twist-2 GPDs γ^+ $\gamma^+ \gamma_5$ $\sigma^{+j} \gamma_5$ There are a total of 32 GPDs $\left|F(x,\xi,t)\right|$ GPD c \overline{L} E \overline{E} H_T \widetilde{H}_T

Definition of GPD correlator:

$$
F^{[\Gamma]}(x,\Delta;\lambda,\lambda')=\frac{1}{2}\int\frac{dz^-}{2\pi}e^{ik\cdot z}\langle p';\lambda'|\bar{\psi}(-\sum_{\bar{z},\bar{z}}\sum_{\bar{z}}\bar{\psi}(\bar{z})|p;\lambda\rangle\Big|_{z^+=0,\vec{z}_\perp=\vec{0}_\perp}
$$

Physical processes sensitive to GPDs

Dynamical Progress of Lattice QCD calculations of PDFs/GPDs

First Lattice QCD results of the x-dependent GPDs

GPDs from asymmetric frames

Lattice QCD calculations of x-dependence of PDFs & related quantities using Euclidean correlators:

Pseudo-GPD approach

Generalized Parton Distributions and Pseudo-Distributions

A. V. Radyushkin^{1,2}

$$
Q(x, P^3) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\nu \, e^{-ix\nu} \left(\frac{z}{\mu(-\frac{1}{2})^2} \right)
$$

Pseudo-PDF : Fixed

Pseudo-GPD approach

86

A. V. Radyushkin^{1,2}

Quasi-PDF : (fixed P^3 **)**

Progress is steadily advancing & we anticipate forthcoming results regarding GPDs from the pseudo-GPD approach

