Precision jet substructure studies for the Relativistic Heavy Ion Collider with the sPHENIX detector In collaboration with Yang-Ting Chien, Daniel Reichelt and Steffen Schumann

#### Oleh Fedkevych

Physics and Astronomy Department, Georgia State University, Atlanta, GA Center for Frontiers in Nuclear Science, Stony Brook University, Stony Brook, NY Jefferson Lab, Newport News, VA

#### October 16, 2023





# QCD is complicated! 0000000 00 20000 000

"Old event representation", credit: arXiv:0811.4622.

# QCD is very complicated!



O Hard Interaction Resonance Decays Matrix Elements Final-State Radiation Initial-State Radiation QED Radiation Weak Showers Hard Onium O Multiparton Interactions Beam Remnants\* Strings Ministrings / Clusters Colour Reconnections String Interactions Bose-Einstein & Fermi-Dirac Primary Hadrons Secondary Hadrons Hadronic Reinteractions (\*: incoming lines are crossed)

"New event representation", credit: Peter Skunds.

### Physics is all about scales!



Typical scales of this Universe (credits: Wikipedia)

# By studying hadrons inside jets we try to learn more about partons and their interactions



A di-jet event recorded by CMS collaboration (credits: CERN)

### Looking inside jets



























### Resummation vs. Monte Carlo



### Looking inside jets



### Various observables exist:

- N-subjettiness,
- Jet angularities,
- Energy-correlation functions,
- Lund plane projection,
- Angular decorrelation,
- and many others!

Lecture Notes in Physics 958

Simone Marzani Gregory Soyez Michael Spannowsky

# Looking Inside Jets

An Introduction to Jet Substructure and Boosted-object Phenomenology

 $\overline{\textcircled{D}}$  Springer

#### More info can be found here

### Observable definition

The jet angularity is defined as

$$\lambda_{\alpha} = \sum_{i \in \text{jet}} \frac{p_{t,i}}{p_{t,\text{jet}}} \left(\frac{\Delta R_{ij}}{R}\right)^{\alpha}, \quad \alpha > 0$$

The angular decorrelation is defined as

$$\Delta \phi_{\mathrm{p}_1,\mathrm{p}_2} = \arccos\left(\frac{\vec{p}_1 \cdot \vec{p}_2}{|\vec{p}_1||\vec{p}_2|}\right)$$

SoftDrop grooming condition:

$$\frac{\min(p_{ti}, p_{tj})}{p_{ti} + p_{tj}} > z_{\text{cut}} \left(\frac{\Delta R_{ij}}{R}\right)^{\beta}$$

- The LHC measurements LHA (λ<sub>1/2</sub>), Jet Width (λ<sub>1</sub>), Jet Thrust (λ<sub>2</sub>), see, for example, 2109.03340
- The theoretical predictions, see, for example 2112.09545, 2104.06920 and 2005.12279
- RHIC measurements?

### CAESAR formalism

The cumulative cross section for a generic observable v can be written as a sum over partonic channels  $\delta$ :

$$\begin{split} \Sigma_{\rm res}(v) &= \sum_{\delta} \Sigma_{\rm res}^{\delta}(v) \,, \text{ with} \\ \Sigma_{\rm res}^{\delta}(v) &= \int d\mathcal{B}_{\delta} \frac{d\sigma_{\delta}}{d\mathcal{B}_{\delta}} \exp\left[-\sum_{l \in \delta} R_{l}^{\mathcal{B}_{\delta}}(L)\right] \mathcal{P}^{\mathcal{B}_{\delta}}(L) \mathcal{S}^{\mathcal{B}_{\delta}}(L) \mathcal{F}^{\mathcal{B}_{\delta}}(L) \mathcal{H}^{\delta}(\mathcal{B}_{\delta}) \,, \end{split}$$

where  $L = -\ln(v)$ ,  $\frac{d\sigma_{\delta}}{dB_{\delta}}$  is the differential Born cross section,  $R_I$  is the collinear radiator for the hard legs I,  $\mathcal{P}$  is the ratio of PDFs,  $\mathcal{S}$  is the soft function,  $\mathcal{F}$  is the multiple emission function and  $\mathcal{H}$  stands for the corresponding kinematic cuts on the Born process.

### CAESAR resummation plugin to Sherpa

- Is using Comix matrix element generator as well as Sherpa machinery for phase-space integration and event generation.
- The NLO computations are performed using Catani-Seymour dipole subtraction.
- For the loop computations we use Recola and OpenLoops libraries.
- The resummed results are matched to the fixed order NLO computations using the multiplicative matching scheme.
- The final result is at NLO+NLL' accuracy level + corrections for the non-perturbative effects.

### Monte Carlo results: LHA



Comparison of hadron-level predictions for ungroomed and groomed jet-angularities in Zj production from Pythia and Herwig (both based on the LO Zj matrix element), and MEPS@LO as well as MEPS@NLO results from Sherpa. Here we use SoftDrop with  $\beta = 0$  and  $z_{cut} = 0.1$ .

### Monte Carlo results: Jet Thrust



Comparison of hadron-level predictions for ungroomed and groomed jet-angularities in Zj production from Pythia and Herwig (both based on the LO Zj matrix element), and MEPS@LO as well as MEPS@NLO results from Sherpa. Here we use SoftDrop with  $\beta = 0$  and  $z_{cut} = 0.1$ .

### Impact of NP-corrections

One can estimate the impact of non-perturbative corrections using Monte Carlo simulations



Hadron-to-parton-level ratios with associated uncertainties extracted from MC simulations (Pythia, Herwig and Sherpa). To some extent can be seen as a jet fragmentation function.

### Theory vs. CMS data



Comparison against recent CMS data for the LHA angularity,  $p_{T,jet} \in [120, 150]$  GeV.

Theory: 2112.09545, 2104.06920 (in collaboration with S. Caletti, S. Marzani, D. Reichelt, S. Schumann, G. Soyez, V. Theeuwes); CMS: 2109.03340

### Theory vs. CMS data



Comparison against recent CMS data for the Jet Thrust angularity,  $p_{T,jet} \in [120, 150]$  GeV.

Theory: 2112.09545, 2104.06920 (in collaboration with S. Caletti, S. Marzani, D. Reichelt, S. Schumann, G. Soyez, V. Theeuwes); CMS: 2109.03340

### Migration between different $p_T$ -bins; credit S. Schumann



Hadronization can cause migration between different  $p_T$ -bins.

### Parton to hadron level transition; credit G. Soyez



Transfer matrix  $\mathcal{T}(\lambda_1^{1,\text{HL}}|\lambda_1^{1,\text{PL}})$  for the jet-width angularity for central dijet events with R = 0.8 and  $p_{T,\text{jet}} \in [120, 150]$  GeV.

# Theory (including TM) vs. CMS data



Comparison against recent CMS data for the Jet Thrust angularity,  $p_{T,jet} \in [120, 150]$  GeV. Magenta band correspond to transfer matrix approach.

Theory: 2112.09545, 2104.06920 (in collaboration with S. Caletti, S. Marzani, D. Reichelt, S. Schumann, G. Soyez, V. Theeuwes); CMS: 2109.03340

# Theory (including TM) vs. CMS data



Comparison against recent CMS data for the Jet Thrust angularity,  $p_{T,jet} \in [120, 150]$  GeV. Magenta band correspond to transfer matrix approach.

Theory: 2112.09545, 2104.06920 (in collaboration with S. Caletti, S. Marzani, D. Reichelt, S. Schumann, G. Soyez, V. Theeuwes); CMS: 2109.03340

### Comparison against CMS data



| configuration | type of jet                                        | $p_{T,jet}$ [GeV] | g-enriched    | q-enriched    |
|---------------|----------------------------------------------------|-------------------|---------------|---------------|
| (1)           | ungroomed $R = 0.4$                                | [120,150]         | dijet central | Z+jet         |
| (2)           | ungroomed $R = 0.4$                                | [1000,4000]       | dijet central | dijet forward |
| (3)           | ungroomed $R = 0.8$                                | [120,150]         | dijet central | Z+jet         |
| (4)           | ungroomed <i>R</i> = 0.4 (tracks only)             | [120,150]         | dijet central | Z+jet         |
| (5)           | SoftDrop ( $\beta$ = 0, $z_{cut}$ = 0.1) $R$ = 0.4 | [120,150]         | dijet central | Z+jet         |

### What about RHIC?

And Now for Something Completely Different

Monty Python's Flying Circus

At RHIC

- MPIs are less relevant ( $\sqrt{S}$  is small comparing to the LHC)
- Hadronization is more important (small  $\sqrt{S}$  and small jet  $p_T$ )
- Completely different energy regime
- One can study jets in pp and AA
- Only few jet substructure studies (STAR) are available 1705.01974
- The sPHENIX data can be used to produce new tunes, to test currently available precise predictions, to get better understanding of hadronization

# $\lambda_{\alpha} = \sum_{i} z_{i} \left(\frac{\Delta_{i,jet}}{R}\right)^{\alpha}$ at RHIC energy, Res. vs. MC



Comparison between resummed predictions matched to fixed order results (SHERPA LO + NLL' accuracy level) against MC simulations (preliminary)

 $\lambda_{\alpha} = \sum_{i} z_{i} \left(\frac{\Delta_{i,jet}}{R}\right)^{\alpha}$  at RHIC energy, Detroit PYTHIA tune



#### (preliminary)

#### Shall one make new tunes?

- There is a Detroit PYTHIA tune 2110.09447 for RHIC, but it mostly affect MPI
- However, MPI are almost absent at RHIC energies
- Main contribution comes from hadronization

# $\lambda_{\alpha} = \sum_{i} z_{i} \left(\frac{\Delta_{i,jet}}{R}\right)^{\alpha}$ at RHIC energy, hadronisation and dacays



Angularities at RHIC energies are strongly affected by hadronization and decay of produced hadrons in case of jets containing a single hadron, see also Lee *et al* in 1901.09095. (preliminary)

# Hadronization and Lund string model



### New tunes?

- There is a Detroit PYTHIA tune 2110.09447 designed to describe RHIC data, but it mostly affect MPI
- However, MPI are almost absent at RHIC energies  $\sqrt{S}$  is too small.
- Lund symmetric fragmentation function

$$f(z) \sim \frac{(1-z)^a}{z} \exp\left(-bm^2/z\right)$$

Hadron formation time

$$\left< \tau^2 \right> = \frac{1+a}{b\kappa^2} \approx 2\,{\rm fm}$$

# Hadronization and Lund string model



### New tunes?

- There is a Detroit PYTHIA tune 2110.09447 designed to describe RHIC data, but it mostly affect MPI
- However, MPI are almost absent at RHIC energies  $\sqrt{S}$  is too small.
- Lund symmetric fragmentation function

$$f(z) \sim \frac{(1-z)^a}{z} \exp\left(-bm^2/z\right)$$

Hadron formation time

$$\langle \tau^2 \rangle = \frac{1+a}{b\kappa^2} \approx 2\,\mathrm{fm}$$

39 / 49

# Hadronization and Lund string model



### New tunes?

- There is a Detroit PYTHIA tune 2110.09447 designed to describe RHIC data, but it mostly affect MPI
- However, MPI are almost absent at RHIC energies  $\sqrt{S}$  is too small.
- Lund symmetric fragmentation function

$$f(z) \sim \frac{(1-z)^a}{z} \exp\left(-bm^2/z\right)$$

Hadron formation time

$$\langle \tau^2 \rangle = \frac{1+a}{b\kappa^2} \approx 2\,\mathrm{fm}$$

40 / 49

# Is $\delta\phi$ affected by NP-corrections?



### Angular decorrelation

- Δφ is an azimthal angle between two most energetic jets (or between a leading jet and a leading photon)
- Unlike λ<sub>α</sub> is more sensitive to radiation pattern
- Which PS-model would work better?

### Summary and next steps:

### Current results

- Resummed predictions for both groomed and ungroomed angularities  $\lambda_{\alpha}$  ( $\alpha \in [1/2, 1, 2]$ ) at LO + NLL' are ready, the NLO + NLL' requires some more (a way more) CPU time
- $\blacktriangleright$  We found that angularities  $\lambda_{\alpha}$  at RHIC energies can be used to study hadronization and potentially to produce new MC tunes
- $\blacktriangleright$  On the other hand, angular decorrelation  $\delta_{\phi},$  can be used to test various parton shower models
- $\blacktriangleright~\delta\phi$  simulated with JEWEL shows strong dependence on the medium temperature
- Correct the resummed predictions for non-perturbative effects using corresponding parton-to-hadron transition matrices
- What about 2D observables, say primary Lund Plane?
- The sPHENIX data is needed!

# Thank you for your attention!

### Monte Carlo result: K-factor



The NLO K-factor as a function of the  $p_{TJ}$  with and without  $\Delta_{Z,\text{jet}}^{p_T} = |(p_{T,\text{jet}} - p_{T,\mu^+\mu^-})/(p_{T,\text{jet}} + p_{T,\mu^+\mu^-})| < 0.3 \text{ cut.}$ 

### Monte Carlo results: LHA



Comparison of hadron-level predictions for ungroomed and groomed jet-angularities in Zj production from Pythia and Herwig (both based on the LO Zj matrix element), and MEPS@LO as well as MEPS@NLO results from Sherpa. Here we use SoftDrop with  $\beta = 0$  and  $z_{cut} = 0.1$ .

### Monte Carlo results: Jet Thrust



Comparison of hadron-level predictions for ungroomed and groomed jet-angularities in Zj production from Pythia and Herwig (both based on the LO Zj matrix element), and MEPS@LO as well as MEPS@NLO results from Sherpa. Here we use SoftDrop with  $\beta = 0$  and  $z_{cut} = 0.1$ .

# Lund plane projection



### To build a Lund plane:

- Recluster your jet using CA algorithm
- Then compute:

$$\begin{split} \Delta_{ab} &\equiv \sqrt{\left(y_a - y_b\right)^2 + \left(\phi_a - \phi_b\right)^2}, \\ k_t &\equiv p_{\mathsf{T}b} \, \Delta_{ab}. \end{split}$$

Discard softest branch and repeat.

### Lund plane projection



Observables we consider as an input for our DNN / CNN. Note that jet flavour is defined in an experimental way here.

# Performance of our CNN / DNN



The ROC curves obtained for one-dimensional angularity distributions. multivariable DNN classification and Lund plane CNN classification. The single points correspond to ATLAS SV1. IP3D and DL1 b-tagging performance from CERN-EP-2019-132.