

QCD factorization: from small to large x Andrey Tarasov

CFNS PostDoc Meeting, October 17th, 2023

Hadron as a many-body parton system

- The typical hadron scale is small
- Due to running of the coupling constant one has to understand the hadron as a strongly bonded many-body parton system
- Hadron is characterized by complex dynamics of parton interactions
- Cannot distinguish individual quarks and gluons
- How do we study this system?

 $1 fm \sim 5 GeV^{-1}$

The system at different scales

- The system exhibits different properties at different scales with relevant degrees of freedom
- An appropriate effective model should be used for each energy scale (ex: Lund model)
- Lattice calculations proved to be very efficient with, however, certain limitations
- Potential application of quantum computers
- The typical scale is small. But what if we introduce a large external scale?

Degrees of Freedom

Energy (MeV)

High-energy probe, external scale

- How does the strongly bonded system respond to a high-energy probe?
- The existence of perturbative phase in the system was discovered
- It became the foundation of the parton model and perturbative QCD

Hadron as a many-body parton system

- Interacting with external probe the hadron reveals different types of parton dynamics, we have separation of different scales
- There is a strong correlation
 between different phases, i.e.
 perturbative and non-perturbative
 components.
- The dense QCD medium strongly interacts with the probe
- If we study perturbative phase at a large energy scale, we can extract information about a nonperturbative many-body parton structure of the hadron

Factorization

- The perturbative phase is under control - different types of reactions, different kinematic limits
- The phases are not independent. The information about the perturbative phase can be accessed indirectly
- The non-perturbative phase interacts with the perturbative one in a dynamical way - evolution equations
- This is formalized in terms of factorization theorems. Details of the factorization scheme are essential!

Deep inelastic scattering (DIS)

$$F_2(x_B, Q^2) = x_B \sum_f e_f^2(q_f(x_B, Q^2) + q_f(x_B, Q^2)) + q_f(x_B, Q^2) + q_f(x_B, Q^2)$$

- Ordering of the transverse momenta $k_{1|} \gg k_{2|} \gg k_{3\perp}$ etc.
- Factorization in the transverse momentum
- The background gluons can be approximated with collinear particles
- It's convenient to choose the factorization scale as Q^2
- Resummation of transverse logarithms $\ln Q^2$

Collins, Foundations of perturbative QCD

Deep inelastic scattering (DIS)

Non-perturbative

Semi-inclusive deep inelastic scattering (SIDIS)

$$F_{UU,T}(x_B, z_h, P_{h\perp}^2, Q^2) \propto H(Q^2, \\ \times x_B \sum_{a} e_a^2 f_1^a(x_B, p_{\perp}^2, \mu^2, \zeta) D_1^a(z, k_{\perp}^2)$$

- The TMD factorization structure is more involved comparing to DIS
- Resummation of transverse L_b and rapidity logarithms $\ln\nu$
- TMD distribution functions depend on two scales

TMD Handbook (2023)

 $,\mu^2)\int d^2p_{\perp}d^2k_{\perp}\delta^2(p_{\perp}-k_{\perp}-P_{h\perp}/z_h)$ $^{2}_{\perp}, \mu^{2}, \zeta_{h})$

Semi-inclusive deep inelastic scattering (SIDIS). Factorization

Collinear:
$$p^{\mu} \sim Q(1,\lambda^2,\lambda)$$

Anti-collinear: $p^{\mu} \sim Q(\lambda^2,1,\lambda)$
Soft: $p^{\mu} \sim Q(\lambda,\lambda,\lambda)$

 To compensate the overlap between collinear modes, a soft factor S should be introduced

$$f^{TMD} = \sqrt{S}B^{TMD}$$

$$\sigma \propto \int \frac{d^2 p_{\perp}}{4\pi^2} I(p_{\perp}, q_{\perp}) Tr\{V(p_{\perp})V^{\dagger}(q_{\perp})\} V^{\dagger}(q_{\perp}) V^$$

- Ordering of the longitudinal momenta $k_1^- \gg k_2^- \gg k_3^-; k_1^+ \ll k_2^+ \ll k_3^+$
- Factorization in the longitudinal momentum fraction
- The background gluons are described with an unintegrated distribution which depends on a transverse momentum
- It's convenient to choose the factorization scale as x_B
- Resummation of rapidity logarithms $\ln 1/x_R$

Balitsky (1996)

Non-perturbative

momentum fraction which is strictly ordered

 $= -\frac{i}{2\pi} \int_0^\infty \frac{dp^-}{2p^-} e^{-ip^-(x-y)^+} (x_\perp | e^{-i\frac{p^2}{2p}})$

$$\sum_{-\infty}^{\infty} \frac{dp^{+}}{2\pi} e^{-ip^{+}(x-y)^{-}} (x_{\perp}) \frac{1}{2p^{+}p^{-} - p_{\perp}^{2} + i\epsilon}$$

$$i p^+ (x-y)^- \left(x_\perp | \frac{1}{p^+ - \frac{p_\perp^2}{2p^-} + i\epsilon} | y_\perp \right)$$

$$\frac{p_{\perp}^2}{2p^-}x^-e^{i\frac{p_{\perp}^2}{2p^-}y^-}|y_{\perp})$$

$$\left| e^{-i\frac{p_{\perp}^{2}}{2p^{-}}x^{-}}e^{i\frac{p_{\perp}^{2}}{2p^{-}}y^{-}} |y_{\perp} \right) \right|$$

$$\int_{y^{-}}^{x^{-}} dz^{-} e^{i\frac{p_{\perp}^{2}}{2p^{-}}z^{-}} A_{\perp}(z^{-}) e^{-i\frac{k_{\perp}^{2}}{2p^{-}}z^{-}} e^{i\frac{k_{\perp}^{2}}{2p^{-}}y^{-}} |y_{\perp}) +$$

Rapidity factorization

 $\frac{p_{\perp}^2}{2n^-} z^- \sim \frac{p_{\perp}^2}{2n^-} \frac{2l^-}{l_{\perp}^2} \sim \frac{l^-}{p^-} \ll 1$

Expansion parameter

 $-\frac{i}{2\pi}\int_{0}^{\infty}\frac{dp^{-}}{2p^{-}}e^{-ip^{-}(x-y)^{+}}\left(x_{\perp}|e^{-i\frac{p_{\perp}^{2}}{2p^{-}}x^{-}}\left(ig\int_{x^{-}}^{x^{-}}dz^{-}e^{i\frac{p_{\perp}^{2}}{2p^{-}}z^{-}}A_{-}(z^{-})e^{-i\frac{k_{\perp}^{2}}{2p^{-}}z^{-}}\right)e^{i\frac{k_{\perp}^{2}}{2p^{-}}y^{-}}|y_{\perp})+O(g^{2})$

Rapidity factorization

$$\frac{p_{\perp}^2}{2p^-} z^- \sim \frac{p_{\perp}^2}{2p^-} \frac{2l^-}{l_{\perp}^2} \sim \frac{l^-}{p^-} \ll \frac{p^-}{p^-} \ll \frac{p^-}{p^-}$$

$$-i\frac{p_{\perp}^2}{2p^-}x^-e^{i\frac{p_{\perp}^2}{2p^-}y^-}|y_{\perp})$$

Expansion parameter

$$dz^{-}e^{i\frac{p_{\perp}^{2}}{2p_{\perp}^{-}}z^{-}}A_{-}(z^{-})e^{-i\frac{k_{\perp}^{2}}{2p_{\perp}^{-}}z^{-}}\Big)e^{i\frac{k_{\perp}^{2}}{2p_{\perp}^{-}}y^{-}}|y_{\perp}) + O(g^{2})$$

$$\left\{ ig \int_{y^{-}}^{x^{-}} dz^{-} A_{-}(z^{-}) \right\} e^{i \frac{p_{\perp}^{2}}{2p^{-}}y^{-}} |y_{\perp})$$

• Straight Wilson line $V(l_{\perp})$ along the light-cone. A gauge phase acquired by a quark propagating in an external gluon field. No "kicks" in the transverse direction!

Transverse momentum at small-x

- Small-x: propagation along the light-cone direction -> shockwave picture
- Due to wide separation in longitudinal momentum fraction one can obtain a large logarithm
- BFKL/BK evolution: resummation of longitudinal logs

Transverse momentum at large-x

- Large-x : transverse "kicks" from the background field
- Systematically can be taken into account -> twist expansion
- Due to wide separation separation in transverse momentum, large logarithms of transverse momentum appear
- DGLAP evolution equation. Resummation of transverse logs
- Different factorization scheme -> different calculation

Transverse momentum at large-x

- Low Q, not enough phase space for a large transverse integral
- Wide separation in rapidity -> large rapidity logs (logs of xB)

Search of saturation at EIC

Finding 1: An EIC can uniquely address three profound questions about nucleons—neutrons and protons—and how they are assembled to form the nuclei of atoms:

- How does the mass of the nucleon arise?
- How does the spin of the nucleon arise?
- What are the emergent properties of dense systems of gluons?

- In EIC kinematics transverse logs will always be present -> No "pure" small-x regime.
- This is going to jeopardize saturation search.
- We need a factorization scheme which systematically takes into account transverse and longitudinal logs

Search of saturation at EIC

Finding 1: An EIC can uniquely address three profound questions about nucleons—neutrons and protons—and how they are assembled to form the nuclei of atoms:

- How does the mass of the nucleon arise?
- How does the spin of the nucleon arise?
- What are the emergent properties of dense systems of gluons?

Aschenauer et al., arXiv:1708.01527

 $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g$

Deep inelastic scattering (DIS) experiments showed that quarks carry only about 30% of the proton's spin: $\Delta\Sigma \approx 0.32$, which is much smaller than predicted by the quark model $\Delta\Sigma \approx 0.6$ - spin puzzle

 $\Sigma(Q^2) = \sum_{f} \int_0^1 dx_B \left(\Delta q_f(x_B, Q^2) + \Delta \bar{q}_f(x_B, Q^2) \right)$

- Integration from zero!
- Spin of the proton -> contribution of small-x?
- Contribution of the region which cannot be accessed experimentally!
- Theory input: small-x evolution evolution equations

No data \Rightarrow no initial condition for DGLAP

DGLAP vs. small-x helicity evolution

Initial condition at x_0

- In the x region which has not yet been probed experimentally, DGLAP-based predictions typically acquire a broad uncertainty band due to extrapolation errors
- The benefit of small-x helicity evolution is it makes a genuine prediction for the hPDFs at small x given some initial conditions at a higher x_0
- To obtain reliable predictions we need transverse logarithms in the small-x evolution! (Note: leading order small-x evolution doesn't have spin effects. Light-cone Wilson lines don't contain any information on the polarization of the target)

Approach 1: extend the classical rapidity factorization scheme. Can we do that?

transverse logarithms

 $(x|\frac{1}{P^2 + i\epsilon}|y) = -\frac{i}{2\pi} \int_0^\infty \frac{dp^-}{2p^-} e^{-ip^-(x-y)^+} (x_-)^{-ip^-(x-y)^+} (x_-)^{-ip^-(x-y)^+}$ $-\frac{i}{2\pi}\int_0^\infty \frac{dp^-}{2p^-}e^{-ip^-(x-y)^+}(x_\perp|e^{-i\frac{p_\perp^2}{2p^-}x^-}(ig$

• Rapidity cut-off of a longitudinal integral $\int_{n'}^{n'} \frac{dp^{-}}{p^{-}}$ can be used to resume both longitudinal and

- Exact result for the propagator in the background field contains transverse phases
- In the leading order rapidity factorization we neglect the phases
- Interplay between transverse and longitudinal variables. Expand in powers of $1/p^{-}$ -> corrections to the leading order factorization

$$\downarrow |e^{-i\frac{p_{\perp}^{2}}{2p^{-}}x^{-}}e^{i\frac{p_{\perp}^{2}}{2p^{-}}y^{-}}|y_{\perp})$$

$$\int_{y^{-}}^{x^{-}} dz^{-}e^{i\frac{p_{\perp}^{2}}{2p^{-}}z^{-}}A_{-}(z^{-})e^{-i\frac{k_{\perp}^{2}}{2p^{-}}z^{-}})e^{i\frac{k_{\perp}^{2}}{2p^{-}}y^{-}}|y_{\perp}) + O$$

Balitsky, Tarasov (2015)

$$(x|\frac{1}{P^2 + i\epsilon}|y) = -\frac{i}{2\pi} \int_{0}^{\infty} \frac{dp^-}{2p^-} e^{-ip^-(x-y)^+}$$

$$\times (\underline{x}|e^{-i\frac{p_{\perp}^2}{2p^-}x^-} \left\{ V - \frac{ig}{2p^-} \int_{-\infty}^{\infty} dz^- z^- V[\infty, z^-] \right\}$$

Cougoulic, Kovchegov, Tarasov, Tawabutr (2022)

KPS-CTT evolution

- Helicity dependent KPS-CTT evolution equations
- Sums up powers of $\alpha_s \ln 1/x$ and $\alpha_s \ln 1/x \ln Q^2$
- Double log originates in an interplay of the transverse and longitudinal integrals
- Contains mixing between different types of operators (amplitudes)
- Consistent with small-x DGLAP evolution
- The equations are closed in the large- N_c and large- N_c & N_f limits.
- Large- N_c equations have been solved numerically (CKTT 2022) and analytically (J. Borden and Y. V. Kovchegov, 2023). The result is in agreement with the BER result:

$$\Delta \Sigma(x, Q^2) \sim \Delta G(x, Q^2) \sim \left(\frac{1}{x}\right)^{3.66\sqrt{\alpha}}$$

Kovchegov, Pitonyak, Sievert (2016-2019) Cougoulic, Kovchegov, Tarasov, Tawabutr (2022)

Experimental data

Dataset (A_1^h)	Target	Tagged Hadron	$N_{ m pts}$	$\chi^2/N_{ m pts}$
SMC [144]	p	h^+	7	1.03
	p	h^-	7	1.45
	d	h^+	7	0.82
	d	h^-	7	1.49
HERMES [154]	p	π^+	2	2.39
	p	π^-	2	0.01
	p	h^+	2	0.79
	p	h^-	2	0.05
	d	π^+	2	0.47
	d	π^-	2	1.40
	d	h^+	2	2.84
	d	h^-	2	1.22
	d	K^+	2	1.81
	d	K^{-}	2	0.27
	d	$K^+ + K^-$	2	0.97
HERMES [155]	³ He	h^+	2	0.49
	³ He	h^-	2	0.29
COMPASS $[152]$	p	π^+	5	1.88
	p	π^-	5	1.10
	p	K^+	5	0.42
	p	K^{-}	5	0.31
COMPASS $[153]$	d	π^+	5	0.50
	d	π^-	5	0.78
	d	h^+	5	0.90
	d	h^{-}	5	0.86
	d	K^+	5	1.50
	d	K^{-}	5	0.78
Total			104	1.01

Data set (A_1)	Target	$N_{ m pts}$	$\chi^2/N_{ m pts}$	
SLAC (E142) [137]	³ He	1	0.60	
EMC [142]	p	5	0.20	
SMC $[143, 145]$	p	6	1.29	
	p	6	0.53	
	d	6	0.67	
	d	6	2.26	
COMPASS [146]	p	5	1.02	
COMPASS [147]	p	17	0.74	
COMPASS [148]	d	15	0.88	
HERMES [149]	n	2	0.73	
Total		59	0.91	

Data set (A_{\parallel})	Target	$N_{ m pts}$	$\chi^2/N_{ m pts}$	
SLAC(E155) [140]	p	16	1.28	
	d	16	1.62	-
SLAC (E143) [139]	p	9	0.56	
	d	9	0.92	
SLAC (E154) [138]	³ He	5	1.09	
HERMES $[150]$	p	4	1.54	
	d	4	0.98	=
Total		63	1.19	_

 $5 \times 10^{-3} < x < 0.1 \equiv x_0$ $1.69 \text{ GeV}^2 < Q^2 < 10.4 \text{ GeV}^2$ 0.2 < z < 1.0

D. Adamiak, N. Baldonado, Y. V. Kovchegov, W. Melnitchouk, D. Pitonyak, N. Sato, M. D. Sievert, A. Tarasov, and Y. Tawabutr (2023)

Data versus theory

g_1 structure function (x dependence)

- 500 replicas
- Each replica represents an individual fit of the experimental data
- largely unconstrained at smaller x
- g_1 is well constrained in the region where there is experimental data
- Evolution equations guarantees that the small x behavior of g_1 must be exponential in $\ln(1/x)$

Sign of g_1 structure function

• The major difficulty in constraining g_1 is caused by the insensitivity of the data to the G_2 and \tilde{G} amplitudes

Asymptotic behavior

• Evolution equations that we use guaranty the asymptotic behavior

$$\lim_{x \to 0} g_1^p(x) \equiv g_1^{p(0)} x^{-\alpha_h(x)}$$
$$\alpha_h(x) \equiv \frac{1}{g_1^p(x)} \frac{\mathrm{d} g_1^p(x)}{\mathrm{d} \ln(1/x)}$$

Impact of EIC data

• In order to study the impact of lower x measurements on our ability to predict the behavior of g_1 and the hPDFs at even smaller x, we utilized EIC pseudodata for the kinematic region of $10^{-4} < x < 10^{-1}$ and $1.69 \ GeV^2 < Q^2 < 50 \ GeV^2$

Initial conditions at large-x

- Large uncertainties do to initial conditions
- Our equations contain small-x limit of DGLAP
- logarithms $\alpha_{\rm S} \ln Q^2$. Full DGLAP evolution.

Approach 2: Extension of the TMD factorization to the small x regime

- TMD factorization resums both transverse and longitudinal (rapidity) logarithms
- At small-x we consider dipole operators which are essentially the TMD operators

Initial condition for small-x evolution from lattice

- There is a lot of progress in lattice extraction of distribution functions (matrix element of operators)
- Works well in the region of large x
- This techniques can be used to define initial conditions for small-x evolution
- For this we need a proper matching procedure. PDF is defined in a particular factorization scheme!
- Need a proper factorization scheme for small-x

First moment of the structure function

- asymptotic in a particular kinematic limit or the expansion breaks down?
- The expansion breaks down for topological quantities. This effects are not local!

The helicity can be extracted from the first moment of the g_1 structure function

$$\int_{0}^{1} dx_B g_1(x_B, Q^2) = \frac{1}{18} \left(3F + D + 2 \Sigma(Q^2) \right) \left(1 - \frac{\alpha_s}{\pi} + O(\alpha_s^2) \right) + O\left(\frac{\Lambda^2}{Q^2}\right)$$
Integration from zero!

$$S^{\mu}\Sigma(Q^2) = \frac{1}{M_N} \sum_{f} \langle P, S | \bar{\Psi}_f \gamma^{\mu} \gamma_5 \Psi_f | P, S \rangle \equiv \frac{1}{M_N} \langle P, S | J_5^{\mu}(0) | P, S \rangle$$
Quark contribution to the proton spin is defined by the isosinglet axial vector current J_5^{μ}

• Does the eikonal/light-cone expansion always work? Can we write it down for all observables and study their

Anomaly equation

The fundamental property of the J^{μ}_{5} current is the anomaly equation:

$$\partial^{\mu} J^{5}_{\mu}(x) = \frac{n_{f} \alpha_{s}}{2\pi} \operatorname{Tr} \left(F_{\mu\nu}(x) \tilde{F}^{\mu\nu}(x) \right) = \sum_{n=1}^{\infty} \frac{1}{2\pi} \left(F_{\mu\nu}(x) \tilde{F}^{\mu\nu}(x) \right) = \sum_{n=1}^{\infty} \frac{1}{2\pi} \left(F_{\mu\nu}(x) \tilde{F}^{\mu\nu}(x) \right)$$

The isosinglet current couples to the topological charge density in the polarized proton!

The anomaly arises from the non-invariance of the path integral measure under chiral (γ_5) rotations. Topological properties of the QCD vacuum! K. Fujikawa, PRL. 42, 1195 (1979)

In the leading order the coupling is generated by the triangle diagram: insertion of the axial current

$2 n_f \partial_\mu K^\mu$

Kazuo Fujikawa

Chern-Simons current:

$$K_{\mu} = \frac{\alpha_S}{4\pi} \epsilon_{\mu\nu\rho\sigma} \left[A_a^{\nu} \left(\partial^{\rho} A_a^{\sigma} - \frac{1}{3} g f_{abc} A_b^{\mu} \right) \right]$$

Topological charge density http://www.physics.adelaide.edu.au/theory/staff/leinweber/VisualQCD/QCDvacuum/

Infrared pole cancelation

$$\langle P, S | J_5^{\mu} | P, S \rangle = M_N S^{\mu} \Sigma(Q^2) = 2M_N S^{\mu} S^{\mu} Q^2 = 0.33 \pm 0.05$$
 Gives a r
 $a^0 |_{Q^2 = 10 GeV^2} = 0.33 \pm 0.05$ Gives a r
crisis

In agreement with COMPASS ($a^0_{Q^2=3GeV^2} = 0.35 \pm 0.08$) and HERMES data $(a^0_{Q^2=5GeV^2}=0.330\pm 0.064)$ Shore (2007), Narison (2021)

$$\frac{a^0(Q^2)}{a^8} \simeq \frac{\sqrt{6}}{f_\pi} \sqrt{6}$$

$$\frac{2n_f}{M_N} g_{\eta_0 NN} \sqrt{\chi'(0)}$$

Shore, Veneziano (1992)

Tarasov, Venugopalan (2022)

- The first moment of g_1 is determined by the non-0.330 \pm 0.011(th) \pm 0.025(exp) \pm 0.028(even perturbative effects
- Can this relation be checked on the lattice?

 $\mathbf{S}^{\mu}a_{0}$

natural resolution of the spin

Shore

Veneziano

Summary

- In a high-energy reaction many observables can be factorized into a perturbative and non-perturbative parts
- The structure of the factorization depends on the type of the observable and kinematic of the scattering reaction
- In many problems we need to understand a transition between different types of factorization
- Problem: how to systematically extend the region of validity of the existing factorization schemes
- Example: spin at small-x. Experimentally is not accessible. We need a theoretical input. Interplay between large and small x
- Lattice extractions of initial conditions for small-x evolution equations
- Anomaly: interplay between perturbative and non-perturbative effects

CONSENSUS STUDY REPORT

AN ASSESSMENT OF COLLIDER SCIENCE

Electron Ion Collider: The Next QCD Frontier

Thank you!