From Fixed Targets to LHC Beam Energies: Insights into the (Cold) QCD Medium

C-J. Na¨ım

Center for Frontiers in Nuclear Science

CFNS Post-docs meeting

October 18, 2023

At large momentum transfer in pp, scale $Q \gg \Lambda_{QCD} \approx 200$ MeV

$$
pp \to \gamma^{\star}/Z^0 \to \ell^+\ell^- + X \text{ (Drell-Yan)}
$$

Factorization of cross section = approximation

$$
\frac{\mathrm{d}\sigma_{\mathrm{pp}}}{\mathrm{d}y\mathrm{d}Q} = \sum_{i,j} \int \mathrm{d}x_1 f_i^{\mathrm{p}}(x_1,\mu) \int \mathrm{d}x_2 f_j^{\mathrm{p}}(x_2,\mu) \frac{\mathrm{d}\hat{\sigma}_{ij}(x_1,x_2,\mu')}{\mathrm{d}y\mathrm{d}Q} + \mathcal{O}\left(\frac{\Lambda_p^n}{Q^n}\right)
$$

- $\hat{\sigma}_{ii}$: partonic cross section calculable in perturbation theory;
- \bullet x_1 , x_2 : fraction of momentum carried by the parton in proton;
- fi*,*j : Parton Distribution Function (PDF), **universal** non perturbative.

Proton-nucleus collisions

Cross section in pA collisions assuming collinear factorization

$$
\frac{\mathrm{d}\sigma_{\mathrm{pA}}}{\mathrm{d}y\mathrm{d}Q} = \sum_{i,j} \int \mathrm{d}x_1 f_i^{\mathrm{p}}(x_1,\mu) \int \mathrm{d}x_2 f_j^{\mathrm{A}}(x_2,\mu) \frac{\mathrm{d}\hat{\sigma}_{ij}(x_1,x_2,\mu')}{\mathrm{d}y\mathrm{d}Q} + \mathcal{O}\left(\frac{\Lambda_{\mathrm{A}}^n}{Q^n}\right)
$$

• Probing the PDF of a nucleus (without nuclear effects)

$$
f_i^{\mathsf{A}} = Zf_i^{\mathsf{p}} + (A - Z)f_i^{\mathsf{n}}
$$

$$
\sigma_{\mathsf{p}\mathsf{A}} = Z\sigma_{\mathsf{pp}} + (A - Z)\sigma_{\mathsf{pn}} \approx \mathsf{A}\sigma_{\mathsf{pp}}
$$

• Investigate nuclear effects via

$$
R_{\mathrm{pA}} \equiv \frac{1}{A} \frac{\mathrm{d}\sigma_{\mathrm{pA}}}{\mathrm{d}\sigma_{\mathrm{pp}}} \approx 1
$$

Let's now study the data in hadron-nucleus collisions

Why study these data:

- a laboratory to study QCD **from SPS to LHC energies**;
- to probe the boundaries of **collinear factorization** in the nucleus;
- important for **better understanding the formation of QGP**.

Effects of cold nuclear matter:

- Nuclear PDF (nPDF);
- Radiative energy loss ;
- Broadening of p_{\perp} ;
- Nuclear absorption etc.

Nuclear parton distribution functions I (initial state)

¹ EMC effect discovered in 1983 in DIS on nuclear targets \bullet PDF is modified in nuclei : $f^{p/A}_{i}$ $f_j^{p/A}\neq f_j^p$ j

• The nuclear modification factor depends on x_2 At $x_2\lesssim 10^{-3}$: shadowing

Nuclear parton distribution functions II (initial state)

nPDF ratio $R^A_j = f^{p/A}_j$ ^{-p/A}/f^p
^j j via a **global fit** assumed to be **universal** √

Factorization leads to x_2 scaling: $\mathsf{R}_{\text{pA}}=\mathsf{R}_{\text{pA}}\left(\mathsf{x}_2,\right)$ $\overline{s}) = R_{\text{pA}}(x_2)$

Data from proton-nuclei collisions are used for the global fit. Can there be other nuclear effects in these collisions ?

Nuclear absorption I (final state)

- Multiple scattering of $Q\bar{Q}$ bound state within the nucleons
- Characterised by the nuclear absorption cross section σ_{abs}^{QN} abs

Condition for quarkonium formation time inside nuclei

$$
t_{\text{had}} = \gamma \tau_{\text{had}} = \frac{E}{M_Q} \tau_{\text{had}} \lesssim L
$$

The absorption survival probability by the medium computed as

$$
S(\sigma_{\rm abs}, L_{\rm A})=e^{-\rho\sigma_{\rm abs}L_{\rm A}}
$$

The pA cross section can be written like

$$
d\sigma^{hA} = \mathcal{S}\left(\sigma_{\text{abs}}, L_A\right) \times d\sigma^{hp} \times A
$$

Nuclear absorption II (final state)

Data explained by nuclear absorption?

 x_{F} where $t_{\mathsf{had}} \lesssim L$ by assuming $0.2 < \tau_{\mathsf{had}}^{J/\psi} < 0.4$ (fm) and W nuclei Possible absorption effect **only at low beam energy** (SPS energy)

No nuclear absorption at LHC

High-energy partons lose energy via soft gluon radiation due to re-scattering in the nuclear medium

$$
\begin{array}{c}\n\mathbf{E} \quad \mathbf{E} \quad
$$

Energy loss effects

$$
\frac{dN^{out}(E)}{dE} = \int_{\epsilon} \mathcal{P}(\epsilon, E) \frac{dN^{in}(E + \epsilon)}{dE}
$$

with $\mathcal{P}(E, \epsilon)$: probability distribution in the energy loss given by QCD

Energy loss effects

High-energy partons lose energy via soft gluon radiation due to re-scattering in the nuclear medium

Can affect differently hard processes:

- **1** Drell-Yan process: h $\mathrm{A} \rightarrow \ell^+ \ell^- + \mathrm{X}$
	- Initial state radiation
- **2** Charmonium production: $hA \rightarrow c\bar{c}(\rightarrow J/\psi) + X$
	- Initial state radiation
	- Final state radiation
	- \bullet Interferences initial/final state radiation

Parton energy loss regimes

Energy loss in initial or final state (small formation time $t_f \leq L$))

 $\langle \epsilon \rangle$ _{LPM} $\propto \alpha_{\bm{s}} \hat{\bm{q}} L^2$

 $hA \to \ell^+ \ell^- + X$ (DY) \bullet eA \rightarrow e + h + X (SIDIS)

Energy loss in initial/final state (large formation time $t_f \gg L$)

 $\langle \epsilon \rangle_{\sf FCEL} \propto \sqrt{\hat{q} L}/M \cdot E$ \gg $\langle \epsilon \rangle_{LPM}$

• hA \rightarrow [QQ]₈ + X (Quarkonium)

Transport coefficient : scattering property of the medium

$$
\hat{q}(x) = \frac{4\pi^2 \alpha_s N_c}{N_c^2 - 1} \rho x G(x) = \hat{q}_0 \left[\frac{10^{-2}}{x} \right]^{0.3}
$$

Broadening effect

 p_{\perp} spectra: an other observable to probe transport properties

$$
\Delta\rho_{\perp}^2=\left\langle\rho_{\perp}^2\right\rangle_{\rm hA}-\left\langle\rho_{\perp}^2\right\rangle_{\rm hp}=\frac{C_R+C_{R'}}{2N_c}\left(\hat{q}_{\rm A}L_{\rm A}-\hat{q}_{\rm p}L_{\rm p}\right)
$$

- The p_{\perp} spectra is modified in pA compared to pp collisions;
- This quantity is also related to \hat{q} .

The complete picture is: energy loss and broadening.

Empirical observations:

Interpretation:

- The gluon's nPDF shows significant error bands;
- Energy loss model describes the suppression of J*/ψ*.

Difficult interpretation due to the models' error bands

Proton-nucleus collisions: data II

[\[EPPS21\]](https://inspirehep.net/literature/1996922) **LHCb data**: $pA \rightarrow D^0 + X$, $10^{-5} \le x \le 10^{-2}$

Proton-nucleus collisions: data III

Global broadening analysis:

• Remarkable scaling from low to high energies \rightarrow common effect

What puzzle!

- Quarkonium model production **is not very well known** (CSM, CEM, NRQCD ...);
- Heavy quark pair production **should proceed via gluon fusion**,

$$
g^p g^A \to Q\bar{Q} \to H + \mathrm{X}
$$

A simple approximation:

$$
R_{\rm pA}^{H}(y) \approx R_{\rm g}^{\rm Pb} \left(x_2, Q^2 = M_H^2\right)
$$

$$
x_2 = M_H e^{-y} / \sqrt{s}
$$

 \bullet x_2 given by LO kinematics,

 \rightarrow precise value not crucial as $R_{\rm g}$ is flat at $x\lesssim 10^{-2}.$

A new observable

$$
\mathcal{R} \equiv R_{\rm pA}^{J/\psi}/R_{\rm pA}^{\Upsilon}
$$

- x ≪ 1: **gluon channel dominates the cross section**;
- $\mathcal{R} \propto \mathsf{G}^\mathsf{A}(x,Q^2=M_{J/\psi}^2)/\mathsf{G}^\mathsf{A}(x,Q^2=M_\mathsf{T}^2);$
- $G^{A}(x,Q^{2}=M_{J/\psi}^{2})$ and $G^{A}(x,Q^{2}=M_{\Upsilon}^{2})$ are fully correlated:

Calculations

- Quarkonia cross sections are calculated using **CEM model** (LO);
- $G^{A}(x)$ given by global fit (EPSS21), band computed from the spread of \sim 50 uncertainty sets.

Υ vs J/ψ , what we can learn?

Last nPDF extraction ...

Left, $R_{\rm pA}^{J/\psi}$ for gluon density: **large uncertaities**;

Right, R for gluon density **sensitive just to Q**² **evolution**.

Uncertainties reduced significantly

 $CFNS$ meeting the control of $16 / 26$

Fixed-target experiment

[\[E772, 38.7 GeV,](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.66.133) J*/ψ*] [\[E772, 38.7 GeV, Υ\]](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.66.2285)

At this energy, σ^{H} includes both quarks and gluons channels;

- $t_f \leq 10$ fm from $x_F \leq 0.1$;
- $R_{\rm pA}^{J/\psi} < R_{\rm pA}^{\Upsilon}$: J $/\psi$ is more suppressed.

LHC experiment I

[\[LHCb, 5 TeV,](https://link.springer.com/article/10.1007/JHEP02(2014)072) J*/ψ*] [\[LHCb, 5 TeV, Υ\]](https://link.springer.com/article/10.1007/JHEP07(2014)094)

At backward $x_2 \sim 0.01$ $(t_f \sim 1$ fm) and at forward $x_2 \sim 10^{-5};$ $R_{\rm pA}^{{\mathrm J}/\psi} < R_{\rm pA}^{\Upsilon}$: J $/\psi$ is more suppressed.

$CFNS$ critical critical

LHC experiment II

[\[LHCb, 8 TeV,](https://link.springer.com/article/10.1007/JHEP02(2014)072) J*/ψ*] [\[LHCb, 8 TeV, Υ\]](https://link.springer.com/article/10.1007/JHEP07(2014)094)

 $R_{\rm pA}^{J/\psi} \sim R_{\rm pA}^{\Upsilon}$: same suppression.

RHIC experiment

Beam energy: √ $s = 200$ GeV

Small error band at mid rapidity.

[Arleo, Peigné, JHEP03(2013)122]

Energy loss in initial/final state (large formation time $t_f \gg L$)

 $\langle \epsilon \rangle$ fcel $\propto \sqrt{\hat{q}L}/M \cdot E$

• hA \rightarrow [QQ]₈ + X

$$
M_{J/\psi} > M_{\Upsilon} \rightarrow R_{\rm pA}^{J/\psi}(\text{Eloss}) < R_{\rm pA}^{\Upsilon}(\text{Eloss})
$$

Observations:

- **We observe that from fixed-targets to LHC (5 TeV) energies ...**;
- **But not at 8 TeV**;
- Hot QCD medium at 8 TeV: comovers effects?.

The double ratio:

- **1** is model production **independent**;
- ² allows for a significant reduction in the nPDF error band.

Observation:

- **1** The latest EPPS16 extraction does not describe any data;
- ² Other QCD (hot and cold) effects should explains these data:
	- $R_{\rm pA}^{J/\psi}\lesssim R_{\rm pA}^{\Upsilon}$ up to 5 TeV,
	- $R_{\rm pA}^{J/\psi} \sim R_{\rm pA}^{\Upsilon}$ at 8 TeV.
- \bullet RHIC data at y \sim 0 might clearly highlight the limitation of nPDFs.

Next step:

- **1** Include energy loss effects;
- 2 Other QCD effects should explains these data;

$$
\bullet \ \ R_{\rm pA}^{J/\psi} \sim R_{\rm pA}^{\Upsilon} \ \text{at} \ 8 \ \text{TeV}.
$$

Data explained by nPDF ?

nPDF alone cannot explain E866 J/ψ at $\sqrt{s} = 38.7$ GeV

Method to extract the broadening

Definition

$$
\langle p_T^2 \rangle \equiv \frac{\int_0^\infty p_T^2 \frac{d\sigma}{dp_T} dp_T}{\int_0^\infty \frac{d\sigma}{dp_T} dp_T} \text{ and } \Delta p_T^2 \equiv \langle p_T^2(A) \rangle - \langle p_T^2(B) \rangle \text{ (GeV}^2\text{)}
$$

1 st method : Kaplan fit

$$
\frac{d\sigma}{dp_T} = \mathcal{N}\left(\frac{p_0^2}{p_0^2 + p_T^2}\right)^m
$$

2 nd method : Bin summation

$$
\langle p_T^2 \rangle \approx \frac{\sum_{i=1}^n p_T(i)^2 \frac{d\sigma}{dp_T}(i) dp_T(i)}{\sum_{i=1}^n \frac{d\sigma}{dp_T}(i) dp_T(i)}
$$

where "n" is the bin number

→ **Observable independent of normalisation**

Other nuclear effects in the broadening calculation

For this study, we considered only the broadening effect but ...

4 Energy loss effect

- Affects only the normalisation of $R_{\text{pA}}(\text{p}_T)$
- Cancellation in Δp_\perp^2
- ² **nPDF effect**
	- $0<\rho_\perp\lesssim M$: fixed target experiment, cancellation in $\Delta\rho_\perp^2$
	- $p_{\perp} \geq M$: LHC case, very large error bar in gluon sector but

$$
\frac{\mathrm{d}\sigma_{\mathrm{hA}}^{\mathrm{nPDF}}}{\mathrm{d}p_{\perp}} = \qquad \qquad \underbrace{R_{i}^{\mathrm{A}}\left(\mathsf{x}_{2}\left(p_{\perp}\right), Q^{2}\right)}_{\text{max}} \qquad \times \frac{\mathrm{d}\sigma_{\mathrm{hp}}}{\mathrm{d}p_{\perp}}
$$

if only normalisation : cancellation in Δp_{\perp}^2

at $x \lesssim 10^{-4}$: shadowing region $R^{\text{A}}_{i}\left(x,Q^2\right)$ ¡ 1 at 0.05 \lesssim x_2 \lesssim 0.2 \colon antisadowing region $R_i^{\rm A}$ $\left(\times,Q^2\right)$ \wr 1

Quarkonium production model

CEM model formalism

$$
\sigma(pp \to \mathcal{Q} + X) = \sum_{i,j,n} \int \int dx_1 dx_2 f_{i/p} f_{j/p} \times \hat{\sigma}[ij \to c\bar{c}X]
$$

$$
\approx \int dx_1 dx_2 g_{p} g_{p} \times \hat{\sigma}[gg \to c\bar{c}X]
$$

NRQCD model formalism

$$
\sigma(pp \to \mathcal{Q} + X) = \sum_{i,j,n} \int dx_1 dx_2 f_{i/p} f_{j/p} \times \hat{\sigma} \left[ij \to (Q\bar{Q})_n + x \right] \left\langle 0 \left| \mathcal{O}_n^{\mathcal{Q}} \right| 0 \right\rangle
$$

$$
\approx \int dx_1 dx_2 g_p g_p \times \hat{\sigma} \left[gg \to (Q\bar{Q})_n + x \right] \left\langle 0 \left| \mathcal{O}_n^{\mathcal{Q}} \right| 0 \right\rangle
$$

$$
R_{\rm pA} \equiv \frac{1}{A} \frac{\text{d}\sigma_{\rm pA}}{\text{d}\sigma_{\rm pp}} \approx \frac{G^A}{g^p}
$$