From Fixed Targets to LHC Beam Energies: Insights into the (Cold) QCD Medium

C-J. Naïm

Center for Frontiers in Nuclear Science

CFNS Post-docs meeting

October 18, 2023

CENS

At large momentum transfer in pp, scale $Q \gg \Lambda_{QCD} \approx 200$ MeV

$$\mathrm{pp} o \gamma^{\star}/Z^{0} o \ell^{+}\ell^{-} + \mathrm{X} \ (\mathsf{Drell-Yan})$$

Factorization of cross section = approximation

$$\frac{\mathrm{d}\sigma_{\mathrm{pp}}}{\mathrm{d}y\mathrm{d}Q} = \sum_{i,j} \int \mathrm{d}x_1 f_i^{\mathrm{p}}\left(x_1,\mu\right) \int \mathrm{d}x_2 f_j^{\mathrm{p}}\left(x_2,\mu\right) \frac{\mathrm{d}\hat{\sigma}_{ij}\left(x_1,x_2,\mu'\right)}{\mathrm{d}y\mathrm{d}Q} + \mathcal{O}\left(\frac{\Lambda_{\mathrm{p}}^n}{Q^n}\right)$$

- $\hat{\sigma}_{ij}$: partonic cross section calculable in perturbation theory;
- x_1 , x_2 : fraction of momentum carried by the parton in proton;
- $f_{i,j}$: Parton Distribution Function (PDF), **universal** non perturbative.

Proton-nucleus collisions

Cross section in pA collisions assuming collinear factorization

$$\frac{\mathrm{d}\sigma_{\mathrm{pA}}}{\mathrm{d}y\mathrm{d}Q} = \sum_{i,j} \int \mathrm{d}x_1 f_i^{\mathrm{p}}\left(x_1,\mu\right) \int \mathrm{d}x_2 f_j^{\mathrm{A}}\left(x_2,\mu\right) \frac{\mathrm{d}\hat{\sigma}_{ij}\left(x_1,x_2,\mu'\right)}{\mathrm{d}y\mathrm{d}Q} + \mathcal{O}\left(\frac{\Lambda_{\mathrm{A}}^n}{Q^n}\right)$$

• Probing the PDF of a nucleus (without nuclear effects)

۸

$$f_i^{\mathsf{A}} = Z f_i^{\mathsf{p}} + (A - Z) f_i^{\mathsf{n}}$$

 $\sigma_{\mathrm{pA}} = Z \sigma_{\mathrm{pp}} + (A - Z) \sigma_{\mathrm{pn}} \approx \mathsf{A} \sigma_{\mathrm{pp}}$

Investigate nuclear effects via

$$R_{\mathrm{pA}} \equiv \frac{1}{A} \frac{\mathrm{d}\sigma_{\mathrm{pA}}}{\mathrm{d}\sigma_{\mathrm{pp}}} \approx 1$$

Let's now study the data in hadron-nucleus collisions

Why study these data:

- a laboratory to study QCD from SPS to LHC energies;
- to probe the boundaries of collinear factorization in the nucleus;
- important for better understanding the formation of QGP.

Effects of cold nuclear matter:

- Nuclear PDF (nPDF);
- Radiative energy loss ;
- Broadening of p_{\perp} ;
- Nuclear absorption etc.

Nuclear parton distribution functions I (initial state)

● EMC effect discovered in 1983 in DIS on nuclear targets
 ● PDF is modified in nuclei : f_i^{p/A} ≠ f_i^p

The nuclear modification factor depends on x₂
 At x₂ ≤ 10⁻³ : shadowing

CFNS

CFNS meeting

Nuclear parton distribution functions II (initial state)

• nPDF ratio $R_j^A = f_j^{p/A}/f_j^p$ via a global fit assumed to be universal

• Factorization leads to x_2 scaling: $R_{\mathrm{pA}} = R_{\mathrm{pA}} \left(x_2, \sqrt{s} \right) = R_{\mathrm{pA}} \left(x_2 \right)$

	EPS09	DSSZ	nCTEQ	EPPS16	EPPS21
e-DIS	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
ν-DIS		\checkmark		\checkmark	\checkmark
Drell-Yan pA	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
RHIC hadrons	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
LHC data pA (QED)				\checkmark	\checkmark
Drell-Yan π A				\checkmark	\checkmark
LHC data pA (D mesons)					\checkmark

Data from proton-nuclei collisions are used for the global fit. Can there be other nuclear effects in these collisions ?

Nuclear absorption I (final state)

- Multiple scattering of $Q\bar{Q}$ bound state within the nucleons
- Characterised by the nuclear absorption cross section σ_{abs}^{QN}

Condition for quarkonium formation time inside nuclei

$$t_{had} = \gamma au_{had} = rac{E}{M_Q} au_{had} \lesssim L$$

The absorption survival probability by the medium computed as

$$S\left(\sigma_{\mathrm{abs}}, L_{\mathrm{A}}\right) = e^{-
ho\sigma_{\mathrm{abs}} \mathrm{L}_{\mathrm{A}}}$$

The pA cross section can be written like

$$\mathrm{d}\sigma^{\mathrm{hA}} = \mathcal{S}\left(\sigma_{\mathrm{abs}}, \mathrm{L}_{\mathrm{A}}\right) \times \mathrm{d}\sigma^{\mathrm{hp}} \times \mathrm{A}$$

Nuclear absorption II (final state)

Data explained by nuclear absorption?

• $x_{\rm F}$ where $t_{\rm had} \lesssim L$ by assuming $0.2 < \tau_{had}^{J/\psi} < 0.4$ (fm) and W nuclei • Possible absorption effect **only at low beam energy** (SPS energy)

No nuclear absorption at LHC

CFNS meeting

High-energy partons lose energy via soft gluon radiation due to re-scattering in the nuclear medium

Energy loss effects

$$\frac{dN^{out}(E)}{dE} = \int_{\epsilon} \mathcal{P}(\epsilon, E) \frac{dN^{in}(E+\epsilon)}{dE}$$

with $\mathcal{P}(E, \epsilon)$: probability distribution in the energy loss given by QCD

Energy loss effects

High-energy partons lose energy via soft gluon radiation due to re-scattering in the nuclear medium

Can affect differently hard processes:

- - Initial state radiation
- Solution: hA $\rightarrow c\bar{c}(\rightarrow J/\psi) + X$
 - Initial state radiation
 - Final state radiation
 - Interferences initial/final state radiation

Parton energy loss regimes

Energy loss in initial or final state (small formation time $t_f \leq L$))

 $\langle \epsilon \rangle_{\rm LPM} \propto \alpha_s \hat{q} L^2$

• $hA \rightarrow \ell^+ \ell^- + X$ (DY) • $eA \rightarrow e + h + X$ (SIDIS)

• $e_A \rightarrow e_{+} + h + X$ (SIDIS)

Energy loss in initial/final state (large formation time $t_f \gg L$)

 $\langle \epsilon
angle_{\mathsf{FCEL}} \propto \sqrt{\hat{q}L} / M \cdot E \gg \langle \epsilon
angle_{LPM}$

• $hA \rightarrow [Q\bar{Q}]_8 + X$ (Quarkonium)

Transport coefficient : scattering property of the medium

$$\hat{q}(x) = \frac{4\pi^2 \alpha_s N_c}{N_c^2 - 1} \rho x G(x) = \hat{q}_0 \left[\frac{10^{-2}}{x} \right]^{0.3}$$

Broadening effect

 p_{\perp} spectra: an other observable to probe transport properties

$$\Delta p_{\perp}^{2} = \left\langle p_{\perp}^{2} \right\rangle_{\mathrm{hA}} - \left\langle p_{\perp}^{2} \right\rangle_{\mathrm{hp}} = \frac{C_{R} + C_{R'}}{2N_{c}} \left(\hat{q}_{\mathrm{A}} L_{\mathrm{A}} - \hat{q}_{\mathrm{p}} L_{\mathrm{p}} \right)$$

- The p_{\perp} spectra is modified in pA compared to pp collisions;
- This quantity is also related to \hat{q} .

The complete picture is: energy loss and broadening.

Empirical observations:

Interpretation:

- The gluon's nPDF shows significant error bands;
- Energy loss model describes the suppression of J/ψ .

Difficult interpretation due to the models' error bands

Proton-nucleus collisions: data II

[EPPS21] LHCb data: $pA \rightarrow D^0 + X$, $10^{-5} \lesssim x \lesssim 10^{-2}$

CFNS

Proton-nucleus collisions: data III

Global broadening analysis:

 \bullet Remarkable scaling from low to high energies \rightarrow common effect

What puzzle!

CFNS

- Quarkonium model production is not very well known (CSM, CEM, NRQCD ...);
- Heavy quark pair production **should proceed via gluon fusion**,

$$g^{p}g^{A} \rightarrow Q\bar{Q} \rightarrow H + X$$

A simple approximation:

$$egin{aligned} \mathcal{R}_{ ext{pA}}^{H}(y) &pprox \mathcal{R}_{ ext{g}}^{ ext{Pb}}\left(x_{2}, \mathcal{Q}^{2} = \mathcal{M}_{H}^{2}
ight) \ x_{2} &= \mathcal{M}_{H}e^{-y}/\sqrt{s} \end{aligned}$$

- x₂ given by LO kinematics,
 - \rightarrow precise value not crucial as $R_{\rm g}$ is flat at $x \lesssim 10^{-2}$.

A new observable

$$\mathcal{R}\equiv \mathit{R}_{\mathrm{pA}}^{J/\psi}/\mathit{R}_{\mathrm{pA}}^{\Upsilon}$$

• $x \ll 1$: gluon channel dominates the cross section;

•
$$\mathcal{R} \propto G^A(x, Q^2 = M^2_{J/\psi})/G^A(x, Q^2 = M^2_{\Upsilon});$$

•
$$G^{A}(x, Q^{2} = M^{2}_{J/\psi})$$
 and $G^{A}(x, Q^{2} = M^{2}_{\Upsilon})$ are fully correlated:

Calculations

- Quarkonia cross sections are calculated using **CEM model** (LO);
- $G^A(x)$ given by global fit (EPSS21), band computed from the spread of \sim 50 uncertainty sets.

Υ vs J/ψ , what we can learn?

Last nPDF extraction ...

• Left, $R_{pA}^{J/\psi}$ for gluon density: large uncertaities;

 \bullet Right, ${\cal R}$ for gluon density sensitive just to Q^2 evolution.

Uncertainties reduced significantly

CFNS

CFNS meeting

Fixed-target experiment

[E772, 38.7 GeV, J/ψ] [E772, 38.7 GeV, Υ]

 \bullet At this energy, $\sigma^{\rm H}$ includes both quarks and gluons channels;

• $t_f \lesssim 10$ fm from $x_F \lesssim 0.1$; • $R_{pA}^{J/\psi} < R_{pA}^{\Upsilon}$: J/ψ is more suppressed.

LHC experiment I

[LHCb, 5 TeV, J/ψ] [LHCb, 5 TeV, Υ]

At backward x₂ ~ 0.01 (t_f ~ 1 fm) and at forward x₂ ~ 10⁻⁵;
R^{J/ψ}_{pA} < R[↑]_{pA}: J/ψ is more suppressed.

CFNS

CFNS meeting

LHC experiment II

[LHCb, 8 TeV, J/ψ] [LHCb, 8 TeV, Υ]

• $R_{\rm pA}^{J/\psi} \sim R_{\rm pA}^{\Upsilon}$: same suppression.

CFNS

RHIC experiment

Beam energy: $\sqrt{s} = 200 \text{ GeV}$

• Small error band at mid rapidity.

CFNS

[Arleo, Peigné, JHEP03(2013)122]

Energy loss in initial/final state (large formation time $t_f \gg L$)

 $\langle \epsilon
angle_{\mathsf{FCEL}} \propto \sqrt{\hat{\mathbf{q}}L}/M\cdot E$

• $hA \rightarrow [Q\bar{Q}]_8 + X$

$$M_{J/\psi} > M_{\Upsilon}
ightarrow R_{
m pA}^{J/\psi}(
m Eloss) < R_{
m pA}^{\Upsilon}(
m Eloss)$$

Observations:

- We observe that from fixed-targets to LHC (5 TeV) energies ...;
- But not at 8 TeV;
- Hot QCD medium at 8 TeV: comovers effects?.

The double ratio:

- is model production independent;
- allows for a significant reduction in the nPDF error band.

Observation:

- The latest EPPS16 extraction does not describe any data;
- **②** Other QCD (hot and cold) effects should explains these data:
 - ${\it R}_{
 m pA}^{J/\psi} \lesssim {\it R}_{
 m pA}^{\Upsilon}$ up to 5 TeV,
 - $R_{\rm pA}^{J/\psi} \sim R_{\rm pA}^{\Upsilon}$ at 8 TeV.
- **③** RHIC data at $y \sim 0$ might clearly highlight the limitation of nPDFs.

Next step:

- Include energy loss effects;
- Other QCD effects should explains these data;

•
$$R_{\rm pA}^{J/\psi} \sim R_{\rm pA}^{\Upsilon}$$
 at 8 TeV.

Data explained by nPDF ?

nPDF alone cannot explain E866 J/ψ at $\sqrt{s} = 38.7$ GeV

Method to extract the broadening

Definition

$$\langle p_{T}^{2} \rangle \equiv \frac{\int_{0}^{\infty} p_{T}^{2} \frac{d\sigma}{dp_{T}} dp_{T}}{\int_{0}^{\infty} \frac{d\sigma}{dp_{T}} dp_{T}} \text{ and } \Delta p_{T}^{2} \equiv \langle p_{T}^{2}(A) \rangle - \langle p_{T}^{2}(B) \rangle \text{ (GeV}^{2})$$

• 1st method : Kaplan fit

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\mathsf{p}_{\mathsf{T}}} = \mathcal{N}\left(\frac{\mathsf{p}_0^2}{\mathsf{p}_0^2 + \mathsf{p}_{\mathsf{T}}^2}\right)^{\mathsf{m}}$$

• 2nd method : Bin summation

$$\langle p_T^2 \rangle \approx \frac{\sum_{i=1}^n p_T(i)^2 \frac{d\sigma}{dp_T}(i) dp_T(i)}{\sum_{i=1}^n \frac{d\sigma}{dp_T}(i) dp_T(i)}$$

where "n" is the bin number

\rightarrow Observable independent of normalisation

CFNS

Other nuclear effects in the broadening calculation

For this study, we considered only the broadening effect but ...

Energy loss effect

- Affects only the normalisation of $R_{\rm pA}(p_{\rm T})$
- Cancellation in Δp_{\perp}^2
- In a second s
 - $0 < p_{\perp} \lesssim M$: fixed target experiment, cancellation in Δp_{\perp}^2
 - $p_{\perp} \gtrsim M$: LHC case, very large error bar in gluon sector but

$$\frac{\mathrm{d}\sigma_{\mathrm{hA}}^{\mathrm{nPDF}}}{\mathrm{d}\boldsymbol{p}_{\perp}} = \underbrace{\boldsymbol{\mathcal{R}}_{i}^{\mathrm{A}}\left(\boldsymbol{x}_{2}\left(\boldsymbol{p}_{\perp}\right),\boldsymbol{\mathcal{Q}}^{2}\right)}_{\text{if only normalisation: cancellation in }\Delta\boldsymbol{p}^{2}} \times \frac{\mathrm{d}\sigma_{\mathrm{hp}}}{\mathrm{d}\boldsymbol{p}_{\perp}}$$

if only normalisation : cancellation in Δp_{\perp}

• at $x \leq 10^{-4}$: shadowing region $R_i^A(x, Q^2)$ j 1 • at $0.05 \lesssim x_2 \lesssim 0.2$: antisadowing region $R_i^{
m A}\left(x,Q^2
ight)$; 1

Quarkonium production model

CEM model formalism

$$\sigma(pp \to Q + X) = \sum_{i,j,n} \int \int dx_1 dx_2 f_{i/p} f_{j/p} \times \hat{\sigma}[ij \to c\bar{c}X]$$
$$\approx \int dx_1 dx_2 g_p g_p \times \hat{\sigma}[gg \to c\bar{c}X]$$

NRQCD model formalism

$$\sigma(pp \to Q + X) = \sum_{i,j,n} \int dx_1 dx_2 f_{i/p} f_{j/p} \times \hat{\sigma} \left[ij \to (Q\bar{Q})_n + x \right] \left\langle 0 \left| \mathcal{O}_n^{Q} \right| 0 \right\rangle$$
$$\approx \int dx_1 dx_2 g_p g_p \times \hat{\sigma} \left[gg \to (Q\bar{Q})_n + x \right] \left\langle 0 \left| \mathcal{O}_n^{Q} \right| 0 \right\rangle$$

$$R_{\mathrm{pA}} \equiv rac{1}{A} rac{\mathrm{d}\sigma_{\mathrm{pA}}}{\mathrm{d}\sigma_{\mathrm{pp}}} pprox rac{G^A}{g^P}$$