The Hidden Universe: Illuminating the Dark

Bishoy H. Dongwi

October 20, 2023

CFNS Postdoc Meeting

・ 何 ト ・ ヨ ト ・ ヨ ト

From Namibia \rightarrow Montezuma, NM \rightarrow Fulton, MO \rightarrow Tokai-Mura (Hampton, VA)

Dongwi

CFNS Postdoc Meeting

Fission

- 2

<ロ> <四> <ヨ> <ヨ>

Neutron Induced Fission

 $\boldsymbol{R} = \boldsymbol{\Phi} \boldsymbol{\sigma} \boldsymbol{\rho}$

- R = Reaction Rate Φ = Neutron Flux ρ = Target Density
- $\sigma = \text{Cross Section}$

< 回 > < 三 > < 三 >

FissionTPC Detector

The fission TPC collecting data at Los Alarnos National Laboratory

(日) (四) (三) (三)

charged particles.

3

Physics Case for ²³⁹Pu/²³⁵U Fission Fragment Ratio

< ロ > < 同 > < 回 > < 回 >

FissionTPC Detector

- Measure a cross-section ratio with high precision: less 1% (stat. and sys.)
- Target normalization correction
- Wraparound & efficiency correction
- Finalizing corrections for publication: SOON

(B)

- (日)

Anomalies

Anomalies

nature The reperience is not all the game readily of becould extra contenal exactes. To bleve sites or music laboration of Vennigana, things of these keys and a statehis pass with specifican ground ad a negative mitch yalou Has a Hungarian physics lab found a tith force of nature? the condition decision and the control in provide design to the control and The cally excepted or the Outrigan Print Challer, N. 19 ed. Street, to a reduce the second second by the fills of the date of And the second s DORK WITTER NIGHT INTERACT WITH ITSELF VIA. R. Corliss, MIT SOME VET UNKNOWN 'DARK FORCE." Questioned have been addressed above ha his sole, care provent scandles to i facer and hat be been and nature Proton radius puzzle, $(g - 2)_{\mu}$ Strong CP problem Positron excess and ⁸Be anomaly

(日) (四) (三) (三)

э

DarkLight @ARIEL/TRIUMF

Dedicated search for the 17 MeV fifth-force carrier

lepton interactions. "Protophobic" new boson would avoid constraints from pion interactions but can be cleanly probed at e- machine. ARIEL e-linac's low energy and high current make it appealing accelerator to do this search

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$e^+ + Z(_{73}Ta) \rightarrow e^- + A' + X$, $A' \rightarrow e^+e^-$

э

Apparatus

Stony Brook U. 10.20.2023 10 / 36

э

イロト イヨト イヨト イヨト

Lepton Universality in the E36 Experiment

- LHCb, Belle & BaBar observed lepton non-universality at 3σ level
- E36 will test lepton universality with stopped K⁺

LHCb (Phys. Rev. Lett. 113)

2-body decay of K^+

Decay width ratio of electronic (K_{e2}) and muonic ($K_{\mu2}$) decay modes

$$R_{K}^{SM} = \frac{\Gamma(K^+ \to e^+ \nu)}{\Gamma(K^+ \to \mu^+ \nu)} = \frac{m_e^2}{m_{\mu}^2} \left(\frac{m_K^2 - m_e^2}{m_K^2 - m_{\mu}^2}\right)^2 (1 + \delta_r)$$

- Hadronic uncertainties cancel
- Strong helicity suppression of electronic channel enhances sensitivity to effects beyond SM

• SM prediction is highly precise: $R_{K}^{SM} = (2.477 \pm 0.001) \times 10^{-5}$

< □ > < □ > < □ > < □ > < □ > < □ >

Neutral Boson Search in Stopped K^+ Decays

K⁺ decays ~ 10¹⁰ Signal 1: K⁺ → $\pi^+ A'$, $A' → e^+e^-$ Background: BR(K⁺→ $\pi^+e^+e^-$) ~ 2.9 x 10⁻⁷ ~ 2,900 ev.

Signal 2: $K^+ \to \mu^+ \vee A'$, $A' \to e^+e^-$ Background: BR($K^+ \to \mu^+ \vee e^+ e^-$) ~ 2.5 x 10⁻⁵ ~ 250,000 ev. Add. background from $K^+ \to \mu^+ \vee \pi^0 \to \mu^+ \vee e^+ e^-(\gamma)$

 $\begin{array}{ll} \pi^{0} \, \text{decays} & 1) \, 3 \times 10^{8} & 2) \, 2 \times 10^{9} \\ \pi^{0} \, \text{production:} & K^{+} \rightarrow \mu^{+} \, \nu \, \pi^{0} \, (3.3\%) & K^{+} \rightarrow \pi^{+} \pi^{0} \, (21.1\%) \\ \hline \text{Signal 3:} & \pi^{0} \rightarrow \gamma \, A', \, A' \rightarrow e^{+}e^{-} \\ \text{Background:} \, \text{BR}(\pi^{0} \rightarrow \gamma \, e^{+} e^{-}) \sim 1.2\% \sim 0.3 \, (2.3) \, \times 10^{7} \, \text{ev}. \end{array}$

 Search for light neutral bosons in channels involving a muon (Signal: 2)

(日)

CFNS Postdoc Meeting

Joint Project between KEK and JAEA

3

イロト イヨト イヨト イヨト

Invariant Mass Distribution

- Applied PID selection from the target system and tracking
- Applied end point momentum cut
- M² cut applied (magenta)

 M_{ee} distribution used for analysis has both P_{endpoint} and M²_{cut} (magenta)

• Combined PID cut: $P_{endpt} \otimes M^2 \otimes \text{TOF1}$

CFNS Postdoc Meeting

Stony Brook U. 10.20.2023 14 / 36

э

Upper Limit Extraction

Dongwi

CFNS Postdoc Meeting

Stony Brook U. 10.20.2023 15 / 36

Upper Limit Extraction

- N_K: Number of K⁺, LT(μ): muon livetime fraction
 A_{A'}: acceptance ratio of the A' with a given mass, determined from e36g4MC
- N_{μvee}: Integrated number of events in a given A' search window

[Dongwi, J.Phys.Conf.Ser. 2446 (2023) 1, 012030]

- 2σ limit: ~ 95% CL of no signal observance
- ${\ensuremath{ \bullet}}$ Upper limit obtained from \sim 30% if the data
- Theoretical predictions: polar and axial vector or Scalar and Pseudoscalar couplings

Stony Brook U. 10.20.2023 15 / 36

Sharing the Fun

HU physics grad student Bishoy Dongwi instructs interested observers at JLab open house 5/17/14. @_HamptonU @Jblab

12:08 PM · May 23, 2014

э

• • = • • = •

Outreach Activities

- COVID-19 caused many students to lag behind
- Especially in STEM and mostly from underrepresented groups
- I volunteered with Girls Who Code to help those students
- Used Replit as means of monitoring and assisting students with their projects

(日)

 Participating in community events and physics luncheons/public lectures

Outreach Activities

C Cade () Isaas ()	G G G G + + O G G €				
🛱 jAnaBootCamp	C (Jecsterer Comp. C ++ C C C ++ C C C ++ C C C ++ C + C ++ C + C ++ C				
Provider - Provider - Crap Datespritt Acded on colline colline colline	Gener D'This and sample plotting is Allowd CAD This and sampl meeting 2 ecompte	Ade th Ade th Add th Ad	annab 14 (5) 10 di mania assi di mania assi di pereraspi	About Scientific C++ for analysi software development A Activity fr 1.ker © 2.kontem ¥ 2.boke	tð s and
belefu	A dead to the of a second to a the codes to the codes which a codes to the codes and a codes to the codes a lot codes to the codes a blue codes a b	es - pretty cool i means station - g simple Ostales i means station -	3 years ago 3 years ago 3 years ago 3 years ago	Releases Serebacipablika Dava enternista	

Coding Bootcamp:

- Tailored graduate students who wanted to improve their software and analysis skills
- C++ scientific coding using ROOT software
- Placed emphasis on teaching object-oriented paradigm for sophistication and abstraction

Community:

- Participated physics day: VUU Physics Club
- Encourage and provide direction for undergraduate students from MSI
- Judge for Science Bowl

CFNS Postdoc Meeting

The End

Dongwi

Stony Brook U. 10.20.2023 19 / 36

æ

ヘロト ヘロト ヘヨト ヘヨト

Back Up Slides

Dongwi

Stony Brook U. 10.20.2023 20 / 36

- E

<ロト < 四ト < 三ト < 三ト

Summary

Summary and Future Work

- Universe is littered with anomalies that must be explained (exciting times!)
- Currently finalizing results of ²³⁹Pu(n, f)/²³⁵U(n, f)
- Final verdict on 2% discrepancy with ENDF
- DarkLight has been approved at TRIUMF
- Detector elements have been constructed
- Commissioning, and installation of detectors this year, and production data data 2024
- Lepton universality is the flagship for Beyond Standard Model Physics
- e36g4MC has been developed from ground-up
- K⁺ decay generator has been implemented into the e36g4MC
- Upper limits for $\mathcal{B}r(\mathcal{K}^+ \to \mu^+ \nu A')$ have been extracted for various $m_{A'}$
- Improvements from PID analysis for reducible background reduction

Edward Bouchet Fellowship

- Combines my two passions: Physics and STEM Outreach
- Broad outreach and mentoring experience, throughout my academic career
- Significant physics overlap (BSM, ML/AI) interest
- Extensive Geant4 background/Software experience
- Opportunities for detector development and construction

(日)

Collaborators

Spokespeople: M. Kohl, S. Shimizu

CANADA

University of British Columbia Department of Physics and Astronomy TRIUMF

USA

University of South Carolina Department of Physics and Engineering Iowa State University College of Liberal Arts & Sciences Hampton University Department of Physics

JAPAN

Osaka University Department of Physics Chiba University Department of Physics High Energy Accel. Research Organization (KEK) Institute for Particle and Nuclear Studies

RUSSIA

Russian Academy of Sciences (RAS) Institute for Nuclear Research (INR)

Stony Brook U. 10.20.2023 22 / 36

・ 何 ト ・ ヨ ト ・ ヨ ト

AI-Driven Detector Design for the EIC

- Use ANL EIC container to run Geant4 simulation of ECal & HCal for the purposes of training regression models
- Converted Geant4 produced ROOT files into HDF5 format
- Used PFNs for training on HDF5 image files
- Realized several problems in Geant4 and I decided to investigate angles (θ, φ)

4 12 16 14 12 16

Energy-Weighted Coordinate: Reconstruct Angles

- Extracted calorimeter hit positions (X, Y, Z) [cm]
- Z has both local (orange) and global (blue) coordinate

< ロ > < 同 > < 回 > < 回 >

Energy-Weighted Coordinate: Reconstruct Angles

Energy-weighted Coordinates

Energy-weighted HCAL coordinates:

$$X = rac{1}{\sum_{j=1}^N E_j} \cdot \sum_{i=1}^N E_i \cdot X_i$$

- Used to calculate the corresponding angles: θ and φ
- Strange bump around Z=4400 cm

▲ □ ▶ ▲ □ ▶ ▲ □

Energy-Weighted Coordinate: Reconstruct Angles

Energy-weighted Angles

- Good agreement in θ and φ: energy-weighted coord.
- Both angles are well correlated: 2D profile plots
- Smearing from HCAL angle reconstruction

Stony Brook U. 10.20.2023 24 / 36

Milestones

•	Proposal submitted	March 2021
•	Proposal approved	April 2021
•	Canadian groups funded	April 2022
•	Technical design of experiment completed	Sep. 2022
•	Technical review by TRIUMF	Oct. 2022
•	US groups funded	Oct. 2022
•	Construction of experiment	Oct. 2022 – Oct. 2023
•	Experiment installed	Nov. 2023
•	Commissioning of experiment	Nov. 2023 – March 2024
•	Data taking begins	April 2024
•	Data taking completed	Sep. 2024

- 2

< ロ > < 回 > < 回 > < 回 > < 回 >

GEM Detectors for DarkLight

Low-energy electroproduction of X17 (DP), LERF@JLab → ARIEL@TRIUMF

CFNS Postdoc Meeting

Dongwi

$K_{\mu 2}$ Contamination Reduction

Charged Particle Momentum

M^2 Spectrum with End Point Momentum Cut

End Point Momentum Cuts

Charged Particle Momentum

Endpoint Momenta

Full Width at Quarter Max.

- For variable endpoint momentum cuts, the FWQM was taken
- If FWQM > 230 MeV/c then the endpoint cut is 230 MeV/c
- Used 5th order polynomial function on range of [210.0, 230.]

μ/e Mis-identification

Csl Performance: $K_{\pi 2}$ $(K^+ o \pi^+ \pi^0, \pi^0 o \gamma \gamma)$ Cluster Analysis

Preselected K_{π2} events (from two Csl clusters)

• $cos(\theta_{\pi^+\pi^0}) \leq -.99$: tight opening angle cut

Number of Stopped K^+ (N_K)

 $K_{\!\mu 2}\,Momentum\,Slice$

$$\begin{split} N_{\mathcal{K}} &= \frac{N_{\mu 2}}{\mathcal{B}r(\mu 2) \mathcal{PS}(\mu) \mathcal{A}_{\mu} \mathcal{LT}(\mu)} \\ &= 7.428 \cdot 10^9 \end{split}$$

- N_K: number of stopped kaons
- N_{µ2}: number of muons
- A_{µ2}: number of muon accepted events
- PS = 49: muon prescale factor
- $LT(\mu) = 1.0$: muon livetime fraction
- $\mathcal{B}r(\mu 2)$: $K_{\mu 2}$ branching ratio
- Select 1 σ cut around mean P_µ, from K_{µ2} decays

< □ > < A >

Clean momentum distribution

CFNS Postdoc Meeting

J-PARC TREK/E36 Detector Geometry

CFNS Postdoc Meeting

e36g4MC Geometry

Detector Assembly

• Geant4 E36 detector

э

Tracking Package and The e36g4MC comparison

Terminology:

- $K_{\mu 2}: K^+ \rightarrow \mu^+ \nu$
- $K_{\pi 2}: K^+ \rightarrow \pi^+ \pi^0$

- Momentum distribution of $K_{\mu 2}$ and $K_{\pi 2}$ at C4
- Eloss and material budget well described
- Magnetic field integral is well described
- MC smeared with detector resolution

Momentum at C4

< A >

(4) (3) (4) (4) (4)

Analysis Strategy for A' Search

Generator channels

Label	Branch	Ratio
0	$K^+ \rightarrow e^+ \nu$	1.582×10^{-5}
1	$K^+ \rightarrow \mu^+ \nu$	6.355×10^{-1}
2	$K^+ \rightarrow e^+ \pi^0 \nu$	5.07×10^{-2}
3	$K^+ \rightarrow \mu^+ \pi^0 \nu$	3.352×10^{-2}
4	$K^+ \rightarrow e^+ \pi^0 \pi^0 \nu$	2.55×10^{-5}
5	$K^+ \rightarrow \pi^+ \pi^- e^+ \nu$	4.247×10^{-5}
6	$K^+ \rightarrow \pi^+ \pi^- \mu^+ \nu$	1.4×10^{-5}
7	$K^+ \rightarrow \pi^+ \pi^0$	2.067×10^{-1}
8	$K^+ \rightarrow \pi^+ \pi^0 \pi^0$	1.760×10^{-2}
9	$K^+ \rightarrow \pi^+ \pi^+ \pi^-$	5.583×10^{-2}
10	$K^+ \rightarrow \mu^+ \nu \gamma$	6.2×10^{-3}
11	$K^+ \rightarrow e^+ \nu \gamma$	9.4×10^{-6}
12	$K^+ \rightarrow \mu^+ \pi^0 \nu \gamma$	1.25×10^{-5}
13	$K^+ \rightarrow \pi^+ \pi^+ \pi^- \gamma$	1.04×10^{-4}
14	$K^+ \rightarrow \mu^+ \nu A'$	$\epsilon^2 \times ratio \ of \ channel \ 16$
15	$K^+ \rightarrow \pi^+ A^{'}$	$\epsilon^2 \times ratio \ of \ channel \ 17$
16	$K^+ \rightarrow \mu^+ e^+ e^- \nu$	2.5×10^{-5}
17	$K^+ \rightarrow \pi^+ e^+ e^-$	3×10^{-7}

K^+ Channels

π^0 Channels

Label	Branch	Ratio
0	$\pi^0 \rightarrow \gamma \gamma$	9.8823×10^{-1}
1	$\pi^0 ightarrow e^+ e^- \gamma$	1.174×10^{-2}
2	$\pi^{0} \rightarrow \gamma A^{'}$	$\epsilon^2 \times ratio \ of \ channel \ 2$

ROOT based generator

- Interactive: utilizes Messenger Classes
- Allows for selection of decay modes and branching ratios

э

・ 何 ト ・ ヨ ト ・ ヨ ト