

Introduction | workfest scope

Holistic Reco

- Identify what we need for holistic reconstruction
- Composed of:
 - Overview session summarizing where reconstruction currently is
 - Open discussion session to discuss where and how to get to holistic reconstruction
- Will also help identify development priorities for remainder of 2024 and into 2025

Electron ID

- Catalyze work on next-steps for the electronfinder
- Small working session for focused discussion and co-working

PID Software

- Report software status
- Talk on PID experience and analysis at BELLE-II

Introduction | workfest agenda

Workfest Agenda [~30 participants!]

- 1) [8 9:45 am] Morning 1: Intro and Context
 - Flash updates from different categories of reconstruction
 - Frames forward-focused open discussion
- 2) [9:45 10 am] Coffee break
- 3) [10 am noon] Morning 2:

Open Discussion

- What do we need for truly *holistic* recnonstruction
- What are the steps to get there?
- 4) [noon 1 pm] Lunch
- 5) [1 1:30 pm] Afternoon 1: The BELLE-II PID Experience

6) [1:30 – 2 pm] Afternoon 2:

Overflow Discussion

- Accommodate discussion from morning or BELLE-II
- 7) [2 3 pm] Afternoon 2:Electron-Finder Working Session I
 - Focused work session on the electron-finder
- 8) [3 3:15 pm] Coffee Break
- 9) [3:15 4:15 pm] Afternoon 3: Electron-Finder Working Session II
- 10) [4:15 4:30 pm] Afternoon 4: Closeout discussion

Introduction | some context

- S&C focus during 1st half of 2024 on priorities for (pre-) TDR identified at January CM
 - ⇒ See earlier <u>S&C report on Saturday</u> [8:30 am] for more details
- Workfest part of ongoing discussion for identifying priorities for remainder of year and beyond
 - Previous discussions:
 - > 07.09.2024 reco meeting
 - > 07.17.2024 S&C meeting
- Focus for workfest discussion: what do we need for truly *holistic* reconstruction?
 - ⇒ Holistic: something synthesizing information from multiple, distinct sources

Identified priority tasks in 2023

- Primary vertexing
- Electron finder
- Low-Q2 tagger
- Particle flow

All either implemented or in progress

Identified reconstruction priorities from CERN Workshop 2024

- Modularity of algorithms
- Use holistic information from various detector components in algorithms
 - > Integration of FF/FB systems
- Web-based event display

Holistic Reconstruction | holistic reconstruction?

Digitization

Canonical Reco

Early Synthesis

Late Synthesis

Example algorithms:

- Timeframe unfolder
- Unfolded event assessor
- Digitization

Example algorithms:

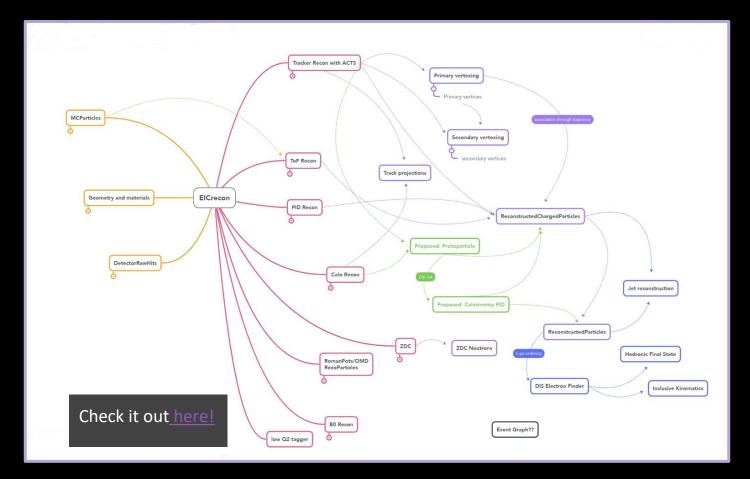
- Tracking reco.
- Calorimeter reco.
- PID reco.
- FF/FB reco.

Example algorithms:

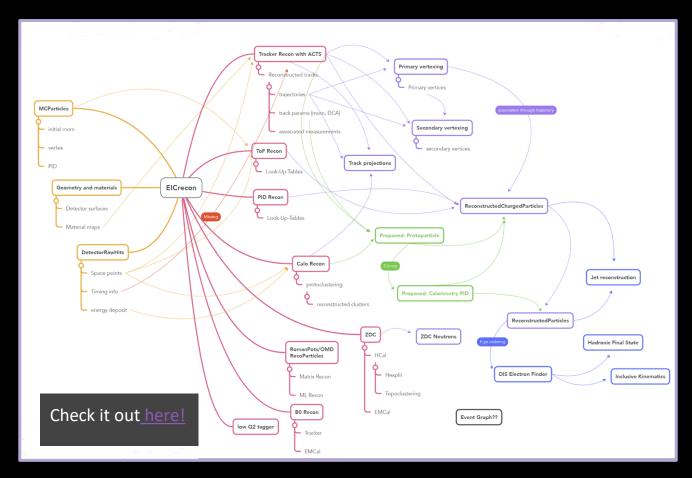
- Vertexing (primary and secondary)
- Electron identification
- Early stages of particle flow

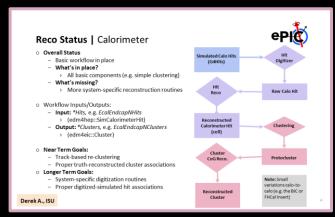
Example algorithms:

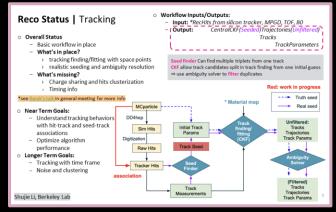
- DIS electron selector
- Kinematic
 calculation
- Jet reconstruction
- Final stages of particle flow

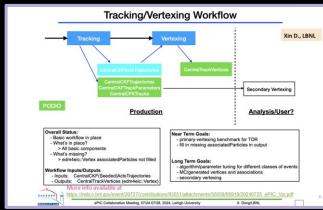

Holistic Reconstruction | holistic reconstruction!

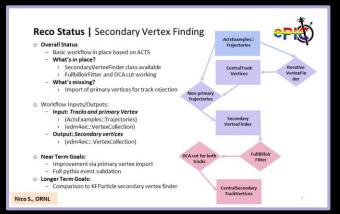
Digitization	Canonical Reco	Early Synthesis	Late Synthesis
Example algorithms: - Timeframe unfolder - Unfolded event assessor - Digitization	Example algorithms: - Tracking reco Calorimeter reco PID reco FF/FB reco.	Example algorithms: - Vertexing (primary and secondary) - Electron identification - Early stages of particle flow	Example algorithms: - DIS electron selector - Kinematic calculation - Jet reconstruction - Final stages of particle flow

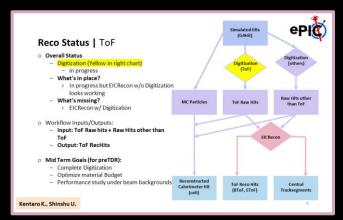

Holistic Reconstruction | mapping out ElCrecon

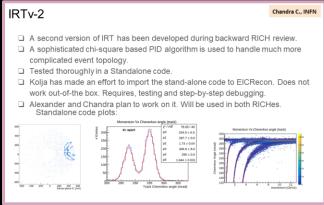

Holistic Reconstruction | mapping out ElCrecon

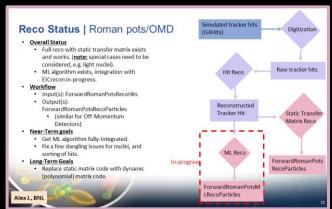


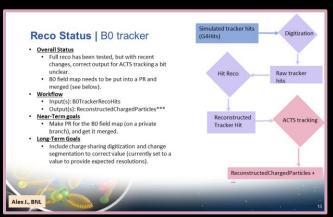


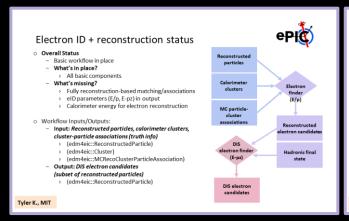

Context Session | snapshots (1/3)

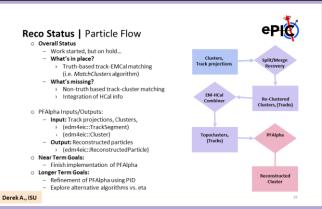




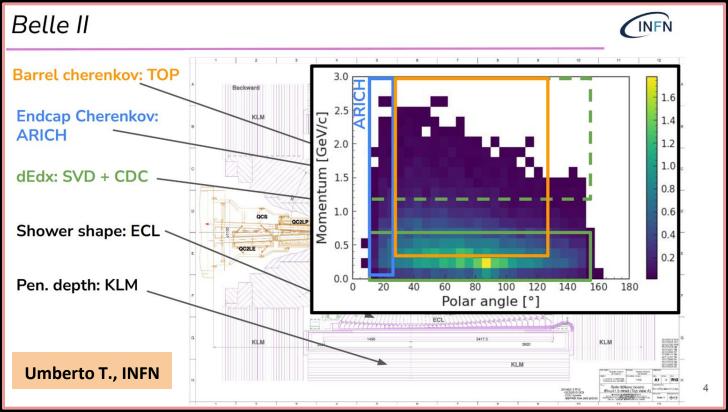



Context Session | snapshots (2/3)





Context Session | snapshots (3/3)



- Strongly recommend checking out both slides and live notes!
 - All are on indico page
- O **Summary:** (almost) all of our canonical reconstruction is in place
 - ***** Reconstruction moving from truth to enhanced realism

- Example: Reconstructed Charged Particles
 - Default will use KF seeds by September
 - Now: realistic seeded quantifies flagged by "seeded" in name
 - Now use LUTs instead of truth PID

PID at BELLE-II | PID subsystems

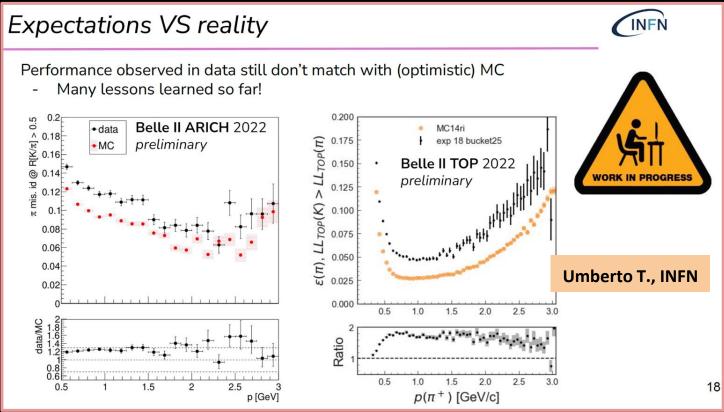
PID at BELLE-II | how to combine hypotheses?

Combining information

Each sub-detector provides a likelihood value for 6 possible PID hypotheses:

- → electron, muon, pion, kaon, proton, deuteron
- → The likelihood values are calculated comparing the observed signal with the expectation for each particle hypothesis (based in MC, data template, or analytic models)
- \rightarrow If particle is out-of-acceptance, LogL = 0 for all hypotheses

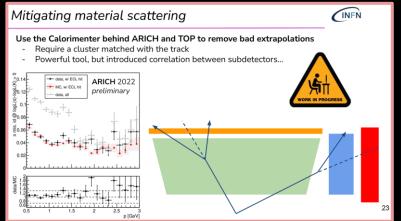
$$\mathcal{L}^d_lpha = \mathcal{L}^d(\mathbf{x}|lpha)$$
 Likelihood for hypothesis $lpha$ from detector d that observed \mathbf{x} hits

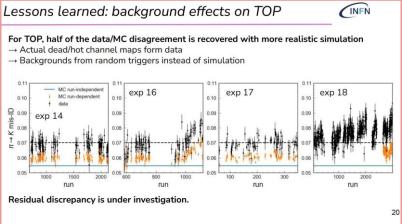

$$\mathcal{L}(\mathbf{x}|i) = \exp\left(\sum_{d}^{d \in D} \log \mathcal{L}^d(\mathbf{x}|i)
ight)$$
 Likelihood for hypothesis $lpha$ from all detectors

Umberto T., INFN

$$P(A_i|\mathbf{x}) = \frac{P(\mathbf{x}|A_i) \cdot P(A_i)}{\sum_j P(\mathbf{x}|A_j) P(A_j)} \quad \Rightarrow P(i|\mathbf{x}) = \frac{\mathcal{L}_i}{\sum_j \mathcal{L}_j} \quad \text{PID probability}$$

PID at BELLE-II | reality check (1/2)




PID at BELLE-II | reality check (2/2)

Umberto T., INFN

PID at BELLE-II | user interface

User's end-point

We save only the LogL values in the mDST

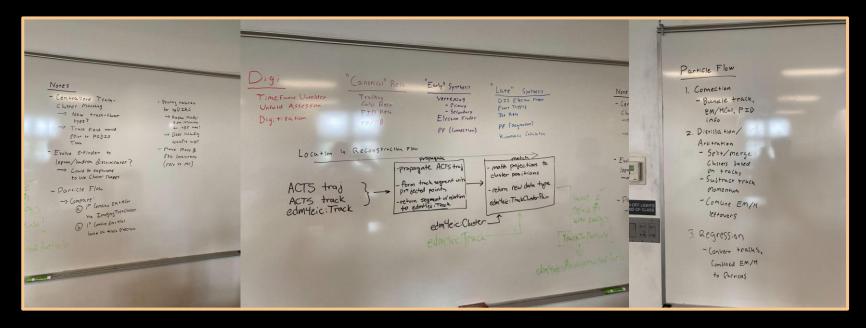
- ~20% of raw data are always available for extra studies

Particle identification probabilities are calculated on-fly by the analysis libraries

- Users can choose which type or probability (global, binary, ternary...)
- Users can choose which detectors are to be used

```
pidPairChargedBDTScore(pdgCodeHyp, pdgCodeTest)

"Expert" variables
pidLogLikelihoodValueExpert(pdgCode, detectorList)
pidDeltaLogLikelihoodValueExpert(pdgCode1, pdgCode2, detectorList)
pidPairProbabilityExpert(pdgCodeHyp, pdgCodeTest, detectorList)
pidProbabilityExpert(pdgCodeHyp, detectorList)
```


electronID, muonID, pionID, kaonID, protonID, deuteronID

Umberto T., INFN

24

Discussion, Work Sessions | overview

- Open discussion spilled over into afternoon working session
 - Was extremely productive!
 - Above: discussion notes left on the whiteboard

- O Bulk of discussion was on interplay of two early/late synthesis algorithms:
 - Electron-Finder, and
 - Particle Flow

Discussion, Work Sessions | PF and eID synergies

Schematic Outline of PF: refactor current work-in-progress to modularize

1) Connection

Bundle tracks, clusters, and PID hypotheses into proto-particles

2) Arbitration

- Split/merge clusters based on tracks
- Subtract track momentum
- Combine EM/HCal leftovers

3) Regression

 Convert proto-particles into reconstructed ones

Electron-Finder Evolution: excise truth info and refactor for synergy with other projects

- 1) Implement track-cluster matching algorithm
 - Would produce new track-cluster data type
- Identify hadrons using track-cluster matches
 - Start with E/p (can expand later)
- 3) Convert identified electrons to reconstructed particles
 - And pass to DIS electron selector

Discussion, Work Sessions | notes and action items

Should centralize track-cluster matching

- Need new data type?
 - A TrackClusterPair or ProtoParticle to bundle matched tracks and clusters
 - Track field would point to PODIO tracks (naturally)
- Could evolve e-finder to a lepton/hadron discriminator
 - Also could extend lepton ID to use cluster shapes

Compare two approaches to PF:

- Combine EMCal and HCal clusters via TopoClustering before connection + arbitration
- Or combine EM/HCal clusters based on track projections

Recheck pointing resolution to hpDIRC:

- Repeat study to see if recent tracking changes improve resolution
- Check if including AstroPix helps
- Bug to fix: make mass & PDG consistent (i.e. based on LUTs) in Reco. Charged Particles

