

Electron Compton polarimetry R&D

Tommaso Isidori

S. Batharai, N. Minafra, P. Paudel, D. Tapia Takaki

The University of Kansas

Joint EICUG/ePIC Collaboration Meeting - July 27, 2024

Office of Science

Compton electron polarimetry at the EIC

$$\sigma(\overrightarrow{e} + \gamma \to e' + \gamma') \neq \sigma(\overleftarrow{e} + \gamma \to e' + \gamma')$$

The Compton scattering process depends on the initial beam polarization

$$\frac{d\sigma}{d\Omega} \propto (1 + P_e \cdot A_{exp} \cdot \cos\theta)$$

Measurement: polarization asymmetry

$$A_{exp} = \frac{\sigma_{\uparrow} - \sigma_{\downarrow}}{\sigma_{\uparrow} + \sigma_{\downarrow}} = \frac{N_{+} - N_{-}}{N_{+} + N_{-}}$$

Observable: electron counting on detector section

$$N_i = N_0(1 + P_e \cdot A_{exp} \cdot \cos\theta_i)$$

Tommaso Isidori

Impacts the time to achieve desired precision in the measurement

...a 1% precision in the measurement is faster (or the time required is shorter) if the analyzing power is high.

Compton electron polarimetry at the EIC

$$\sigma(\overrightarrow{e} + \gamma \to e' + \gamma') \neq \sigma(\overleftarrow{e} + \gamma \to e' + \gamma')$$

The Compton scattering process depends on the initial beam polarization

$$\frac{d\sigma}{d\Omega} \propto (1 + P_e \cdot A_{exp} \cdot \cos\theta)$$

Measurement: polarization asymn

$$A_{exp} = \frac{\sigma_{\uparrow} - \sigma_{\downarrow}}{\sigma_{\uparrow} + \sigma_{\downarrow}} = \frac{N_{+} - N_{-}}{N_{+} + N_{-}}$$

Observable: electron counting on detector section

$$N_i = N_0 (1 + P_e \cdot A_{exp} \cdot \cos\theta_i)$$

Tommaso Isidori

Impacts the time to achieve desired precision in the measurement

...a 1% precision in the measurement is faster (or the time required is shorter) if the analyzing power is high.

Fast detectors - principles of operation

Integrating devices (e.g. ion chamber)

The EIC scenario

- Possibility to perform integrated measurement
- chance to pefrom bunch-by-bunch feedback measurements:
 - Reduces the integration time
 - Increases the accuracy of the individual measurement

Tommaso Isidori

Fast Detectors for high-rate measurements

- Single particle resolution at high rate
- Online dose evaluation
- Precise beam characterization
- In-beam instrumentation

. . .

Fast, highly granular detector (e.g. LGAD, pCVD, AC-LGAD...)

R&D on dosimetry and medical physics

Readout system v1 used to prove single particle counting capabilities at medical facilities

Tommaso Isidori

First results with new readout

New KU readout board

- 2 stages (transimpedance) amplification chain
- Discrete components for easy simulation/customization
- Holed design for reduced material budget

Tommaso Isidori

- Optimized readout for single particle counting
- Improved cluster finding algorithms

May 2024 test beam - Survey on fast detctor technologies

Acquisition setup:

- Oscilloscope (10G Sa/s, 2.5 GHz)
- custom DAQ
- LV PSU
- CAEN desktop HV (w/ GUI)

Tommaso Isidori

Survey of fast detector technologies for single particle resolution:

pCVD A.Camsonne, JLab. LGAD R. Sacchi et al, University and INFN Torino AC-LGAD A.Tricoli, G.Giacomini, BNL **3D** diamond G. Passaleva, INFN Firenze 3D Si Trenches A.Lai, A.Cardini, INFN Cagliari

Detectors still in R&D phase: 3DSi trenches, 3d diamond, AC-LGAD

May 2024 test beam - Survey on fast detctor technologies

Electron Linac at the St.Luke's Hospital of Dublin

- Spills of ~ 3 μ s
- Substructure of ~350 ps (~2.8 GHz)
- ~ 5 ms between spills

Thanks to **R.McNulty's** group, **P.McNavana** and the St. Luke's Hospital staff

Tommaso Isidori

Permanent magnet bends the electrons trajectory DUT moves on the 3 axes for alignment Remote acquisition with scilloscope

Analysis strategy - fast peak detection algorithm

Joint EICUG/ePIC Collaboration Meeting - July 27, 2024

Analysis strategy - beam position

Beam position measurement

- Data are stored in .h5 dataframes
- Custom class to extract the beam position

Tommaso Isidori

Joint EICUG/ePIC Collaboration Meeting - July 27, 2024

Linac

Preliminary results - pCVD

JLAB HALL-C Poli-crystal CVD

- Good radiation resistance
- Pulses width ~ 6 10 ns
- Good SNR
- High voltage bias required (~ 800 V)
- Large production costs
- CCE scales with irradiation (~ 10¹⁴ neq)

Tommaso Isidori

11

Preliminary results - LGAD

Tommaso Isidori

Joint EICUG/ePIC Collaboration Meeting - July 27, 2024

12

Preliminary results - AC-LGAD

Joint EICUG/ePIC Collaboration Meeting - July 27, 2024

Preliminary results - scCVD

Single crystal CVD

- Good radiation resistance
- Already used at High rate
- CCE scales with irradiation (~ 10¹⁵ neq)
- High voltage bias required (~ 1kV)
- Large production costs
- Small areas

Joint EICUG/ePIC Collaboration Meeting - July 27, 2024

Preliminary results - 3D Diamond

3D synthetic diamond

- Tot active area 1.5mm x 1.5mm
- Min Pixel pitch 55 μ m × 55 μ m
- Bias voltage: -100 to +125
- best time resolution $\sigma_t \sim 35 \, ps$
- Single hit efficiency up to 20 MHz/cm²
- Fluences up to $8 \cdot 10^{15}$ MeV neq cm⁻¹
- Production limited to prototypes
- Detection area very small
- Still in R&D phase

Joint EICUG/ePIC Collaboration Meeting - July 27, 2024

Preliminary results - 3D Si trenches

Joint EICUG/ePIC Collaboration Meeting - July 27, 2024

- Good preliminary performance for single particle counting. All detector integration time under 10 ns
- Noise and backgrounds reduced through iterative filtering methods
- Data under study to extract final distributions

ToDo list:

- Finalizing filtering procedures and assessing systematics
- Finalize detectors comparison
- Exploring unsupervised ML techniques for fast oscillation detection
- Paper in preparation

Tommaso Isidori

The University of Kansas

Backup slides

Office of Science

Summer 2024 Joint EICUG/ePIC Collaboration Meeting - July 27th 2024

R&D on dosimetry and medical physics

Performance of a low gain avalanche detector in a medical linac and characterisation of the beam profile

Tommaso Isidori

May 2024 test beam - Survey on fast detctor technologies

Not many options for electron facilities at high rate and intensity!

Medical Linac at the St.Luke's hospital of Dublin:

- Previous experience
- Knowledge of the beam characteristics

Many thanks to Prof. **R.McNulty** and his UCD group, **P.McNavana** and the St. Luke's Hospital staff (Dublin) !!

Tommaso Isidori

2.5 GHz, 4 Ch, 12 bits, 10 GS/s, 100 Mpts/Ch

St. Luke's Hospital LINAC beam structure

- Spills of ~ 3 mus
- Substructure of ~350 ps (~2.8 GHz)
- ~ 5 ms between spills

R&D on dosimetry and medical physics

Readout system v1 used to prove single particle counting capabilities at medical facilities

Tommaso Isidori

R&D on dosimetry and medical physics

Performance of a low gain avalanche detector in a medical linac and characterisation of the beam profile

Tommaso Isidori

First results with v2 readout

New boards are optimized for fast response (sacrificing some time resolution)

N.Minafra, Test Platform for Automated Scan of Multiple Sensors

Tommaso Isidori

Joint EICUG/ePIC Collaboration Meeting - July 27, 2024

Reference detector: thin LGADS for CMS ETL

- Thickness ~150 um (tot)
- linearity up to 10 MIPs and for high rates (>200MHz)
- Improved single particle ID
- Time resolution < 50ps up to 1.5×10^{15}

23

First results with v2 readout

Proton beam at the AIC144 cyclotron (Crakow)

- 60 MeV protons (58 MeV in treatment room)
- Intensity up to 100 Gy/s.
- 4x10⁶ 4x10⁸ protons/sec
- Nominal pulse structure RF = 26.26 MHz

Thin LGAD

- Pixels 1.3mm x 1.3 mm
- Sensors biased to 180 or 200V
- Gain of ~20
- Short pulses ~ 2.5ns
- precise time of arrival of ~ 50 ps
- Optimized readout for single particle counting
- Improved cluster finding algorithms

Tommaso Isidori

Joint EICUG/ePIC Collaboration Meeting - July 27, 2024

Cluster identification algorithm

Machine Learning for Analysis of Fast Particle Detector Data for Proton Therapy Application

Fast timing for proton therapy

Survey on fast detctor technologies - pCVD

Baseline pCVD detector

JLAB Poli-crystal CVD

- Good radiation resistance
- CCE quickly deteriorates with irradiation (~ 10¹⁴ neq)
- Pulses width ~ 5 10 ns
- To be tested at high rate and electron beams

6.583 m¹

Tommaso Isidori

X2= 1.55 ns 1/ΔX= 177 MHz

Si 3D trenches detector

- Pixels ~ 55 mum x 55 mum
- Sensors biased down to -150V
- Very short pulses < 1 ns
- Very promising radiation resistance (2.5 x 10¹⁶ 1MeV n_{eq} cm⁻²)

Innovative silicon pixel sensors for a 4D VErtex LOcator detector for the LHCb high luminosity upgrade

Joint EICUG/ePIC Collaboration Meeting - July 27, 2024

Survey on fast detctor technologies - 3D diamond

3D synthetic diamond

Tested @ PSI with pion beam

- p_π = 270 MeV/c
- Tot active area 1.5mm x 1.5mm
- Pixel pitch 55 μ m × 55 μ m (or 100 mum x 160 mum)
- Bias voltage: -100 to +125

Fabrication and Characterisation of 3D Diamond Pixel Detectors With Timing Capabilities

Tommaso Isidori

Joint EICUG/ePIC Collaboration Meeting - July 27, 2024

Elementary cell А Diamond Resistive Carbon

> в Signal [mV]

Previous results - R&D on Dosimetry and medical physics

data smoothing:

average of the data from 0.5 to 1.5 ns before every pulse for each one of the waveforms. data filtering:

remove from the data the high frequency fluctuations, reducing the uncertainty on the threshold crossing definition **Cluster finder algorithm:**

Select the isolated candidate particles

Constant Fraction Discrimination:

Offline algorithms to correct the ToA reconstruction

Tommaso Isidori

Preliminary results - noise analysi

Noise Analysis

- Custom python class to:
 - Iteration Over Shifts: iterates over a range of shifts, shifting one waveform relative to the other by a set amount of time
 - Waveform Interpolation: for each shift, it interpolates one of the waveforms to align with the other
 - Linear Regression: It performs a linear regression between the two waveforms to find the best-fit line
 - Calculation of Standard Deviation: after finding the best-fit line, it calculates the std of the difference between the interpolated waveform and the waveform under analysis
 - Minimization of Standard Deviation: identifies the shift that minimizes the std, indicating the best alignment between the two

Joint EICUG/ePIC Collaboration Meeting - July 27, 2024

Previous results - The Jlab Hall-C detector

The Jlab Hall-C electron detector

- > set of four diamond planes each with 96 "microstrips"
- > Each strip is 0.180 mm wide separated by 0.02 mm.

Joint EICUG/ePIC Collaboration Meeting - July 27, 2024

