E_{Λ} = 100 GeV, θ_{Λ} =1.1 mrad, z_{vtx} =19.2 m

Benchmarking ZDC design with Lambda

Miguel Arratia

Credit: Sebouh Paul, Sebastian Vasquez, Ryan Milton, Barak Schmookler

ePIC meting, July 27th 2024

SiPM-on-tile Fe/Sc ZDC

Fe blocks from STAR

High-granularity from CALICE-style tech Staggered design as in <u>NIMA 1060 (2024) 169044</u> Design and performance in arXiv:2406.12877

Key ZDC Physics Benchmarks

$\Lambda \to \eta \pi^0$ challenge: displaced vertex

We need to know Z_vertex to properly measure polar angle!

Efficiency (Fraction of events with neutron and 2 photons in ZDC area)

- Higher energy -> higher boost, which increases lifetime and collimates decay particles.
- Higher z position -> increases solid angle

$E_{\Lambda} = 100 \text{ GeV}, \theta_{\Lambda}=1.1 \text{ mrad}, z_{vtx}=19.2 \text{ m}$

More Examples

Lambda Reco Step 1:

Select events with 3 topoclusters Identify neutron candidate as cluster with largest eigenvalue Other 2 are photons

Lambda Reco Step 2:

"Kinematic fitting" Force diphoton mass to pi0 PDG, which constraints longitudinal-vertex position.

Use this constraint while calculating mass of $\Lambda \to n\pi^0$

 $E_{\Lambda} = 100 \text{ GeV}, \theta_{\Lambda} = 1.1 \text{ mrad}, z_{vtx} = 19.2 \text{ m}$

Lambda mass with SiPM-on-tile standalone (no crystal)

10

Energy dependence

Lambda polar angle with SiPM-on-tile standalone (no crystal)

Angle resolution with GNN reconstruction

Energy resolution with GNN reconstruction

Take-Home Message

SiPM-on-tile Fe/Sc and <u>short</u> LYSO crystal meet all physics requirements, We have found no good reason to keep long PbW04 crystal in baseline.

Low-energy [1 MeV-O(1) GeV] $\gamma \rightarrow$ LYSO High-energy γ and $\pi 0 \rightarrow$ Fe/Sc High-energy neutrons, Lambda \rightarrow Fe/Sc

Backup

Angle bias with GNN reconstruction

