Reconstruction Workflow for FF Detectors

Alex Jentsch (BNL) July 25th, 2024

2

9.5m

Roman Pots/OMD

Overall Status

- Full reco with static transfer matrix exists and works. (<u>note</u>: special cases need to be considered, e.g. light nuclei).
- ML algorithm exists, integration with EICrecon in-progress.

Workflow

- Input(s): ForwardRomanPotsRecoHits
- Output(s): ForwardRomanPotsRecoParticles
 - (similar for Off-Momentum Detectors)

<u>Near-Term goals</u>

- Get ML algorithm fully-integrated.
- Fix a few dangling issues for nuclei, and sorting of hits.
- Long-Term Goals
 - Replace static matrix code with dynamic (polynomial) matrix code.

B0 Tracker

Overall Status

- Full reco has been tested, but with recent changes, correct output for ACTS tracking a bit unclear.
- B0 field map needs to be put into a PR and merged (see below).
- Workflow
 - Input(s): BOTrackerRecoHits
 - Output(s): ReconstructedChargedParticles***
- <u>Near-Term goals</u>
 - Make PR for the BO field map (on a private branch), and get it merged.
- Long-Term Goals
 - Include charge sharing digitization and change segmentation to correct value (currently set to a value to provide expected resolutions).

B0 EMCAL

Overall Status

 B0 EMCAL is a crystal EMCAL – uses components which already exist.

<u>Workflow</u>

- Input(s): BOECalRecHits
- Output(s): B0ECalClusters
- <u>Near-Term goals</u>
 - TBD
- Long-Term Goals
 - Include any changes to digitization to reflect final choice of electronics (SiPM).

ZDC EMCAL

Overall Status

 ZDC EMCAL is a crystal EMCAL – uses components which already exist.

Workflow

- Input(s): EcalFarForwardZDCHits
- Output(s): EcalFarForwardZDCClusters
- <u>Near-Term goals</u>
 - TBD
- Long-Term Goals
 - Include any changes to digitization to reflect final choice of electronics (SiPM, APD).
 - Work on integrated reconstruction for full ZDC (HCAL + EMCAL).

ZDC HCAL

Overall Status

• ZDC HCAL is the same SiPM-on-Tile technology and reco as the HCAL insert

<u>Workflow</u>

- Input(s): HcalFarForwardZDCHits
- Output(s): HcalFarForwardZDCClusters
- <u>Near-Term goals</u>
 - TBD
- Long-Term Goals
 - Work on integrated reconstruction for full ZDC (HCAL + EMCAL).

Preliminaries

- The EIC physics program includes reconstruction of final states with very far-forward protons, from many different possible collision systems.
 - e+p scattering, e+d/e+He3/e+A (proton(s) from nuclear breakup).
 - Produces protons with a broad range in longitudinal momentum, which then traverse the full hadron-going lattice (dipoles and quads).

Preliminaries

- The EIC physics program includes reconstruction of final states with very far-forward protons, from many different possible collision systems.
 - e+p scattering, e+d/e+He3/e+A (proton(s) from nuclear breakup).
 - Produces protons with a broad range in longitudinal momentum, which then traverse the full hadron-going lattice (dipoles and quads).
- Momentum reconstruction requires *transfer matrices* to describe particle motion through the magnets.

 M_3 M_1 M_2 $(x_{det.,}y_{det.})$ (x_{IP}, y_{IP}) $M_{transfer} = M_1 M_2 M_3 \dots$ x_{ip} $a_4 \ a_5$ $x_{det.}$ $b_1 \ b_2 \ b_3 \ b_4 \ b_5$ $\theta_{x,ip}$ $\theta_{x,det.}$ Transforms coordinates at detectors (position, angle) to $c_1 \ c_2 \ c_3 \ c_4 \ c_5$ $y_{det.}$ original IP coordinates. d_5 $\theta_{y,det.}$ Matrix unique for different positions along the beam-axis! $e_1 \ e_2 \ e_3 \ e_4 \ e_5$ $z_{det.}$ $\Delta p/p$

Preliminaries

 x_{ip} 0.0 x_{28m} 1.88 28.97 0.0 0.0 0.25 θ_{xip} $\theta_{x,28m}$ 0.0 -0.034-0.02110.21 0.0 0.0 0.0 0.0 -2.260.0 0.0 y_{ip} y_{28m} 3.78 = θ_{y28m} θ_{yip} 0.0 0.0 -0.180.0 -0.1450.0 z_{ip} 0.057 Z_{28m} 1.014 0.0 0.0 1.0 0.026 $\Delta p/p$ 0.0 0.0 0.0 0.0 0.0 1.0 $\Delta p/p/$

From BMAD – central trajectory 275 GeV proton

• Matrix describes how particles travel through the magnets toward the detector.

The Problem

/ 1.88	28.97	0.0	0.0	0.0	0.25 \	$\begin{pmatrix} x_{ip} \end{pmatrix}$		$\langle x_{28m} \rangle$	
-0.0211	0.21	0.0	0.0	0.0	-0.034	θ_{xip}		$\theta_{x,28m}$	
0.0	0.0	-2.26	3.78	0.0	0.0	y_{ip}	_	y_{28m}	
0.0	0.0	-0.18	-0.145	0.0	0.0	$ heta_{yip}$	_	θ_{y28m}	
0.057	1.014	0.0	0.0	1.0	0.026	z _{ip}		Z _{28m}	
\ 0.0	0.0	0.0	0.0	0.0	1.0 /	$\Delta p/p/$		$\Delta p/p/$	

From BMAD – central trajectory 275 GeV proton

 Protons from nuclear breakup, or high-Q² e+p interactions → protons can have large deviations from central orbit momentum → <u>require unique matrices!</u>

Roman Pots

Off-Momentum

Detectors

longitudinal momentum fraction $x_L = \frac{p_{z,proton}}{p_{z,beam}}$

Full GEANT4 simulation.

Protons E = 275 GeV $0 < \theta < 5$ mrad For a 275 GeV beam, a 270 GeV proton has an x_L of 0.98.

Results - Momentum

• Comparing "static" BMAD matrix (left) with dynamic matrix calculation (right).

Results - p_T

• Comparing "static" BMAD matrix (left) with dynamic matrix calculation (right).

17

Drawbacks of current approach

- Solution dependent on choice of initial "tuning cards" (e.g. test trajectories).
 - Matrix may not capture non-linear effects for large angles/small x_L.
- Current approach will not be able to help with more-complicated interactions (e.g. Sullivan process), where tagged particles may not come from IP.
- The current method needs to be run separately for the Roman Pots and Off-Momentum Detectors.

Dedicated R&D can generalize approach to easily extend x_L range

- The present method works reasonably well, and has the benefit of using calculated matrices following a similar method as BMAD.
- <u>But:</u> we care about describing a full range of momenta (present study only went down to x_L of 0.75).
- A more modern method with ML techniques, integrated with the EPIC simulation framework would enable easy evolution of the reconstruction method as the detector descriptions are updated*.

Takeaways and Next Steps

- General approach for accurately reconstructing far-forward particles demonstrated.
 - Would benefit from a more-modern approach using ML techniques to provide easier adaptability as the EIC far-forward design evolves.
 - Need to extend this approach to the off-momentum detectors.
 - More-challenging problem particles more severely off-momentum ($x_L \sim 50\%$, or less).
- Once a method is put in place, integration with the EPIC detector framework would be required.

• Begin with a set of "input tuning cards" which contain the trajectories for calculating the matrices.

- Plot the 36 matrix values (and 4 offsets) as a function of xL.
- Fit the resulting plots with 2nd-degree polynomials.

1.88481537	28.96766544	0.0000	0.0000	0.0000	0.24906255	١
-0.02114673	0.20555261	0.0000	0.0000	0.0000	-0.03322467	
0.0000	0.0000	-2.25541901	3.78031509	0.0000	0.0000	
0.0000	0.0000	-0.17782524	-0.14532313	0.0000	0.0000	ļ
0.05735551	1.01363652	0.0000	0.0000	1.0000	0.02568709	
\ 0.0000	0.0000	0.0000	0.0000	0.0000	1.0000	/

 The only needed additional component is a way to get x_L from the local detector hits, which is used to evaluate the matrix elements.

• Extract x_L value from lookup table for the $(\theta_{x,rp}, x_{rp})$ @ z = 28m ordered pair. ' 2 23 Χ_I Decreasing XL க் -10 "Chromaticity plot" serves as a lookup table. പ്പ xL is used to evaluate the correct 0 0_{x,RP}, x slope at RP [mrad] matrix entries. 0.3 \circ 0. 0.2 0.4 0.5 0.6 0.8 0.9

24

• Now we can "build" the correct matrix with the correct offset values for a given trajectory and perform our kinematic reconstruction.

Results - Px

• Comparing "static" BMAD matrix (left) with dynamic matrix calculation (right).

Results - Py

• Comparing "static" BMAD matrix (left) with dynamic matrix calculation (right).

