Reconstruction Workflow for FF Detectors

The epl(\$) Far-Forward Detectors

B1apf

The epiç Far-Forward Detectors

The epide Far-Forward Detectors

The eplat Far-Forward Detectors

Roman Pots/OMD

Simulated tracker hits (G4Hits)

- Overall Status
- Full reco with static transfer matrix exists and works. (note: special cases need to be considered, e.g. light nuclei).
- ML algorithm exists, integration with ElCrecon in-progress.
- Workflow
- Input(s): ForwardRomanPotsRecoHits
- Output(s): ForwardRomanPotsRecoParticles - (similar for Off-Momentum Detectors)
- Near-Term goals
- Get ML algorithm fully-integrated.
- Fix a few dangling issues for nuclei, and sorting of hits.
- Long-Term Goals
- Replace static matrix code with dynamic (polynomial) matrix code.

B0 Tracker

- Overall Status

- Full reco has been tested, but with recent changes, correct output for ACTS tracking a bit unclear.
- BO field map needs to be put into a PR and merged (see below).

- Workflow

- Input(s): BOTrackerRecoHits
- Output(s): ReconstructedChargedParticles***
- Near-Term goals
- Make PR for the BO field map (on a private branch), and get it merged.
- Long-Term Goals
- Include charge sharing digitization and change segmentation to correct value (currently set to a value to provide expected resolutions).

B0 EMCAL

- Overall Status
- BO EMCAL is a crystal EMCAL - uses components which already exist.
- Workflow
- Input(s): BOECaIRecHits
- Output(s): BOECaIClusters
- Near-Term goals
- TBD
- Long-Term Goals
- Include any changes to digitization to reflect final choice of electronics (SiPM).

ZDC EMCAL

- Overall Status
- ZDC EMCAL is a crystal EMCAL - uses components which already exist.
- Workflow
- Input(s): EcalFarForwardZDCHits
- Output(s): EcalFarForwardZDCClusters
- Near-Term goals
- TBD
- Long-Term Goals
- Include any changes to digitization to reflect final choice of electronics (SiPM, APD).
- Work on integrated reconstruction for full ZDC (HCAL + EMCAL).

ZDC HCAL

- Overall Status

- ZDC HCAL is the same SiPM-on-Tile technology and reco as the HCAL insert

- Workflow

- Input(s): HcalFarForwardZDCHits
- Output(s): HcalFarForwardZDCClusters
- Near-Term goals
- TBD
- Long-Term Goals
- Work on integrated reconstruction for full ZDC (HCAL + EMCAL).

Backup

Preliminaries

- The EIC physics program includes reconstruction of final states with very far-forward protons, from many different possible collision systems.
- e+p scattering, e+d/e+He3/e+A (proton(s) from nuclear breakup).
- Produces protons with a broad range in longitudinal momentum, which then traverse the full hadron-going lattice (dipoles and quads).

Preliminaries

- The EIC physics program includes reconstruction of final states with very far-forward protons, from many different possible collision systems.
- e+p scattering, e+d/e+He3/e+A (proton(s) from nuclear breakup).
- Produces protons with a broad range in longitudinal momentum, which then traverse the full hadron-going lattice (dipoles and quads).
- Momentum reconstruction requires transfer matrices to describe particle motion through the magnets.

$$
\left(\begin{array}{c}
x_{i p} \\
\theta_{x, i p} \\
y_{i p} \\
\theta_{y, i p} \\
z_{i p} \\
\Delta p / p
\end{array}\right)=\left(\begin{array}{cccccc}
a_{0} & a_{1} & a_{2} & a_{3} & a_{4} & a_{5} \\
b_{0} & b_{1} & b_{2} & b_{3} & b_{4} & b_{5} \\
c_{0} & c_{1} & c_{2} & c_{3} & c_{4} & c_{5} \\
d_{0} & d_{1} & d_{2} & d_{3} & d_{4} & d_{5} \\
e_{0} & e_{1} & e_{2} & e_{3} & e_{4} & e_{5} \\
f_{0} & f_{1} & f_{2} & f_{3} & f_{4} & f_{5}
\end{array}\right)\left(\begin{array}{c}
x_{\text {det. }} \\
\theta_{x, \text { det. }} \\
y_{\text {det. }} \\
\theta_{y, \text { det. }} \\
z_{\text {det. }} \\
\Delta p / p
\end{array}\right)
$$

- Transforms coordinates at detectors (position, angle) to original IP coordinates.
- Matrix unique for different positions along the beam-axis!

Preliminaries
$\left(\begin{array}{cccccc}1.88 & 28.97 & 0.0 & 0.0 & 0.0 & 0.25 \\ -0.0211 & 0.21 & 0.0 & 0.0 & 0.0 & -0.034 \\ 0.0 & 0.0 & -2.26 & 3.78 & 0.0 & 0.0 \\ 0.0 & 0.0 & -0.18 & -0.145 & 0.0 & 0.0 \\ 0.057 & 1.014 & 0.0 & 0.0 & 1.0 & 0.026 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0\end{array}\right)\left(\begin{array}{c}x_{i p} \\ \theta_{x i p} \\ y_{i p} \\ \theta_{y i p} \\ z_{i p} \\ \Delta p / p\end{array}\right)=\left(\begin{array}{c}x_{28 m} \\ \theta_{x, 28 m} \\ y_{28 m} \\ \theta_{y 28 m} \\ z_{28 m} \\ \Delta p / p\end{array}\right)$

From BMAD - central trajectory 275 GeV proton

- Matrix describes how particles travel through the magnets toward the detector.

Matrix enables reconstruction of scattering information at the IP using only local hits at the detector.

Detector

The Problem
$\left(\begin{array}{cccccc}1.88 & 28.97 & 0.0 & 0.0 & 0.0 & 0.25 \\ -0.0211 & 0.21 & 0.0 & 0.0 & 0.0 & -0.034 \\ 0.0 & 0.0 & -2.26 & 3.78 & 0.0 & 0.0 \\ 0.0 & 0.0 & -0.18 & -0.145 & 0.0 & 0.0 \\ 0.057 & 1.014 & 0.0 & 0.0 & 1.0 & 0.026 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 1.0\end{array}\right)\left(\begin{array}{c}x_{i p} \\ \theta_{x i p} \\ y_{i p} \\ \theta_{y i p} \\ z_{i p} \\ \Delta p / p\end{array}\right)=\left(\begin{array}{c}x_{28 m} \\ \theta_{x, 28 m} \\ y_{28 m} \\ \theta_{y 28 m} \\ z_{28 m} \\ \Delta p / p\end{array}\right)$

From BMAD - central trajectory 275 GeV proton

$$
\begin{aligned}
& \text { longitudinal momentum fraction } \\
& \qquad x_{L}=\frac{p_{z, p r o t o n}}{p_{z, \text { beam }}}
\end{aligned}
$$

Full GEANT4 simulation.

Results - Momentum

- Comparing "static" BMAD matrix (left) with dynamic matrix calculation (right).

Results - p_{T}

- Comparing "static" BMAD matrix (left) with dynamic matrix calculation (right).

Drawbacks of current approach

- Solution dependent on choice of initial "tuning cards" (e.g. test trajectories).
- Matrix may not capture non-linear effects for large angles/small x_{L}.
- Current approach will not be able to help with more-complicated interactions (e.g. Sullivan process), where tagged particles may not come from IP.
- The current method needs to be run separately for the Roman Pots and OffMomentum Detectors.

Dedicated R\&D can generalize approach to easily extend x_{L} range

- The present method works reasonably well, and has the benefit of using calculated matrices following a similar method as BMAD.
- But: we care about describing a full range of momenta (present study only went down to x_{L} of 0.75).
- A more modern method with ML techniques, integrated with the EPIC simulation framework would enable easy evolution of the reconstruction method as the detector descriptions are updated*.

Takeaways and Next Steps

- General approach for accurately reconstructing far-forward particles demonstrated.
- Would benefit from a more-modern approach using ML techniques to provide easier adaptability as the EIC far-forward design evolves.
- Need to extend this approach to the off-momentum detectors.
- More-challenging problem - particles more severely off-momentum ($x_{L} \sim 50 \%$, or less).
- Once a method is put in place, integration with the EPIC detector framework would be required.

Backup

The (current) Basic Solution

- Begin with a set of "input tuning cards" which contain the trajectories for calculating the matrices.

The (current) Basic Solution

- Plot the 36 matrix values (and 4 offsets) as a function of xL .
- Fit the resulting plots with $2^{\text {nd-degree polynomials. }}$

28.96766544
0.20555261
0.0000
0.0000
1.01363652
0.0000
$\left.\begin{array}{cccc}0.0000 & 0.0000 & 0.0000 & 0.24906255 \\ 0.0000 & 0.0000 & 0.0000 & -0.03322467 \\ -2.25541901 & 3.78031509 & 0.0000 & 0.0000 \\ -0.17782524 & -0.14532313 & 0.0000 & 0.0000 \\ 0.0000 & 0.0000 & 1.0000 & 0.02568709 \\ 0.0000 & 0.0000 & 0.0000 & 1.0000\end{array}\right)$
- The only needed additional component is a way to get x_{L} from the local detector hits, which is used to evaluate the matrix elements.

The (current) Basic Solution

- Extract x_{L} value from lookup table for the $\left(\theta_{x, r p}, x_{r p}\right) @ z=28 m$ ordered

- "Chromaticity plot" serves as a lookup table.
- $x L$ is used to evaluate the correct matrix entries.

The (current) Basic Solution

- Now we can "build" the correct matrix with the correct offset values for a given trajectory and perform our kinematic reconstruction.

Results - Px

- Comparing "static" BMAD matrix (left) with dynamic matrix calculation (right).

Results - Py

- Comparing "static" BMAD matrix (left) with dynamic matrix calculation (right).

