

Istituto Nazionale di Fisica Nucleare SEZIONE DI TORINO

PID at Belle II

Umberto Tamponi *tamponi@to.infn.it* INFN - Sezione di Torino

1

Joining EICUG/ePIC collaboration meeting July 25th 2024

INFN

e^+e^- collisions at ~10.6 GeV

- \rightarrow Asymmetric collisions
- \rightarrow Focus on flavour physics: need for ID for all particle species
- \rightarrow Low momentum: 50 MeV/c 3 GeV/c

Belle II

3

Belle II

4

Combining information

Each sub-detector provides a likelihood value for 6 possible PID hypotheses:

- \rightarrow electron, muon, pion, kaon, proton, deuteron
- → The likelihood values are calculated comparing the observed signal with the expectation for each particle hypothesis (based in MC, data template, or analytic models)
- \rightarrow If particle is out-of-acceptance, LogL = 0 for all hypotheses

 $\mathcal{L}^d_{\alpha} = \mathcal{L}^d(\mathbf{x}|\alpha)$ Likelihood for hypothesis α from detector d that observed \mathbf{x} hits

$$\mathcal{L}(\mathbf{x}|i) = \exp\left(\sum_{d=0}^{d \in D} \log \mathcal{L}^{d}(\mathbf{x}|i)\right)$$

Likelihood for hypothesis α from all detectors

$$P(A_i|\mathbf{x}) = \frac{P(\mathbf{x}|A_i) \cdot P(A_i)}{\sum_j P(\mathbf{x}|A_j)P(A_j)} \quad \Rightarrow P(i|\mathbf{x}) = \frac{\mathcal{L}_i}{\sum_j \mathcal{L}_j} \quad \text{PID probability}$$

dE/dx

Silicon tracker

 \rightarrow PDF is templated directly from data using tagged p, K, protons

Silicon tracker

 \rightarrow PDF is templated directly from data using tagged p, K, protons

Drift chamber

 \rightarrow Calculate the expected dE/dx after running several data-driven calibrations

Time-of-Propagation

Time Of Propagation counter

- Long and thin fused silica radiators
- Cherenkov angle is function of the time spent by the photons in it
- Mostly PID by timing

Time-of-Propagation

Combination the **ToF** and the **Cherenkov angle** in one single measurement

Time Of Propagation counter

- Long and thin fused silica radiators
- Cherenkov angle is function of the time spent by the photons in it
- Mostly PID by timing

Time-of-Propagation

1.41 GeV mirror-facing event

$$\mathcal{L}_{\alpha}^{\text{TOP}} = \exp\left[\sum_{i=1}^{N} \log\left(\frac{N_{\alpha}S_{\alpha}(c_i, t_i) + N_BB(c_i, t_i)}{N_{\alpha} + N_B}\right) + \log P_N(N_{\alpha} + N_B)\right]$$

Dual aerogel proximity RICH

Dual aerogel proximity RICH

Dual radiator (but another kind of)

- \rightarrow Two thin (2 cm) layers with different refractive index
- \rightarrow Tuned to have overlapping rings
- \rightarrow Reconstruction: count the number of hints in the expected ring

Calorimeter and K_L system

Electromagnetic calorimeter

- \rightarrow Use the E/p ratio, PDF templated from MC.
- \rightarrow More recently: combine all shower shape variables into a BDT

14

KLM (instrumented return yoke)

 \rightarrow use the penetration depth in the iron plates, accounting for the scintillator efficiency

The impact of TOP and ARICH

- $\pi \to K$ mis-identification probability in collision data
 - True pions tagged in D and K_{s} decays
 - Ask for LL(K) > LL(π)

15

The impact of TOP and ARICH

- $\pi \to K$ mis-identification probability in collision data
 - True pions tagged in D and K_{s} decays
 - Ask for LL(K) > LL(π)

Expectations VS reality

INFN

Performance observed in data still don't match with (optimistic) MC

- Many lessons learned so far!

Aerogel tile edges are responsible for most of the disagreement in ARICH

Removing tracks extrapolated in the edges

- Improves PID (expected) reducing acceptance
- Improves data/MC (not expected)
 - Work towards better tile alignment

Lessons learned: background effects on TOP

For TOP, half of the data/MC disagreement is recovered with more realistic simulation

- \rightarrow Actual dead/hot channel maps form data
- \rightarrow Backgrounds from random triggers instead of simulation

Residual discrepancy is under investigation.

Lessons learned: extrapolating is dangerous

Both TOP and ARICH are outside the tracking volume

- Rely on track extrapolation
- Decays-in-flight and hard scattering lead to wrong extrapolation
- Significant PID degradation from hard-scattering

Lessons learned: hard scattering in ARICH

Sizable material budget in front of ARICH

- \rightarrow CDC backplane, inner tracker cables...
- \rightarrow Clearly seen mapping the impact points of electrons with associated photons

Mitigating material scattering

Use the Calorimenter behind ARICH and TOP to remove bad extrapolations

- Require a cluster matched with the track
- Powerful tool, but introduced correlation between subdetectors...

User's end-point

We save only the LogL values in the mDST

~20% of raw data are always available for extra studies

Particle identification probabilities are calculated on-fly by the analysis libraries

- Users can choose which type or probability (global, binary, ternary...)
- Users can choose which detectors are to be used

electronID, muonID, pionID, kaonID, protonID, deuteronID
pidPairChargedBDTScore(pdgCodeHyp, pdgCodeTest)

"Expert" variables

pidLogLikelihoodValueExpert(pdgCode, detectorList)

pidDeltaLogLikelihoodValueExpert(pdgCode1, pdgCode2, detectorList)

pidPairProbabilityExpert(pdgCodeHyp, pdgCodeTest, detectorList)

pidProbabilityExpert(pdgCodeHyp, detectorList)

Future developments

- Pure Log-likelihood combination SHOULD be the best estimator if:
 - All LL are well defined
 - There are no correlations between detectors

Beam background level, tracking, pre-showering in the PID detectors and backsplash from calorimeter are correlating the PID detector response.

If one trains a NN to combine the Log-Likelihoods, performance are improved

Backup

- TOP implementation in Belle II:
- \rightarrow 16 modules (or slots) arranged around the interaction point
- \rightarrow Each module is made of two identical bars of fused silica glued together
- \rightarrow Backward side: expansion prism, PMTs and readout
- \rightarrow Forward side: spherical mirror

Hamamatsu MCP-MPTs

- \rightarrow 23x23 mm, 5 mm pixel
- \rightarrow NaKSbCs photocathode; QE \geq 24% (28% on average) at 380 nm
- $\rightarrow 55\%$ collection efficiency
- \rightarrow Gain = $10^5 10^6$
- → **Transient time spread < 40 ps** NIM A, 766, p. 163-166. (2014)

Readoud: IRSX Scope-on-a-chip

- \rightarrow 8 channel waveform digitizer
- \rightarrow 500 MHz Bandwidth
- \rightarrow 2.7 GSa/s
- \rightarrow 11.6 μs storage buffer
- \rightarrow Full waveform output
- ightarrow 28 ps resolution

NIM A 941, 162342 (2019)

TOP sensors

Hamamatsu MCP-MPTs

- \rightarrow 23x23 mm, 5 mm pixel
- \rightarrow NaKSbCs photocathode; QE \geq 24% (28% on average) at 380 nm
- $\rightarrow 55\%$ collection efficiency
- \rightarrow Gain = $10^5 10^6$
- \rightarrow Transient time spread < 40 ps

ARICH sensors

Hamamatsu Hybrid Avalanche Photo Detector (HAPD)

- \rightarrow 63x63 mm, 4.9mm pixel.
- \rightarrow NaKSbCs photocathode; QE \geq 24% (28% on average) at 380 nm
- → Gain = Signal gain = 4×10^4 by Hybrid amplification process. Operation in 1.5 T magnetic field

Belle II ARICH structure

Belle II ARICH structure

Hydrophobic Aerogel

→ 17x17 cm, 2cm thick → Trans. length > 30 mm at 300 nm → $n_1 = 1.045$, $n_2 = 1.055$

Hamamatsu Hybrid Avalanche Photo Detector (HAPD)

- \rightarrow 63x63 mm, 4.9mm pixel.
- \rightarrow QE $\sim 28\%~$ at 380 nm
- \rightarrow Gain = 4x10⁴

See Rok's poster for more info! https://agenda.infn.it/event/22092/co ntributions/167676/

Belle II ARICH: low-level performance

Cherenkov angle resolution from bhabha events: **14 mrad**

Belle II goal:collect 50 ab⁻¹ (~50x Belle data)Super-KEKB goal:>30x KEKB luminosity

Belle II goal:collect 50 ab⁻¹ (~50x Belle data)Super-KEKB goal:>30x KEKB luminosity

Beam aspect ratio (flat beam ~ 1-2%) $L = \frac{\gamma_{\pm}}{2er_{e}} \left(1 + \frac{\sigma_{y}^{*}}{\sigma_{x}^{*}}\right) \left(\frac{I_{\pm}\xi_{y\pm}}{\beta_{y}^{*}}\right) \left(\frac{R_{L}}{R_{\xi_{y\pm}}}\right)$ Vertical β Geometry

function at IP

Geometrical corrections

Brute force:

- Current 2 x larger

Nanobeam scheme:

- $\beta_v * 20 \text{ x smaller}$
- Vertical beam size ~ 50 nm

Belle II VS Belle, a matter of backgrounds

[P.Lewis et al, NIM A 914, 69-144 (2019)]

Single beam backgrounds:

- Touschek $\propto l^2 \sigma_v^{-1} n_b^{-1}$
- Beam Gas ∝ I 🕇
- Synchrotron radiation $\propto 1$

Luminosity backgrounds:

- Radiative Bhabha ∝ L 1
- Two-photon ∝ L 1
- Injection 🛏

Belle II is designed to perform as well as or better than Belle with much higher backgrounds!

Belle II performance VS Belle, in broad strokes

Tracking [Comp. Phys. Comm. 259 (2021) 107610 (Monte Carlo only), in preparation (data)]

- Better resolution at both low and high p₊
- Better efficiency at low p_t
- 2x better vertexing and decay time resolution

Full event reconstruction [Comput. Softw. Big Sci 3, 6 (2019)]

- Better purity and efficiency

Neutrals [paper in preparation]

- Better algorithms and electronics
- (Currently) only enough to compensate the increased backgrounds

Particle identification [paper in preparation]

- Better algorithms and new detectors (working on NN-based approaches)
- (Currently) only enough to compensate the increased backgrounds