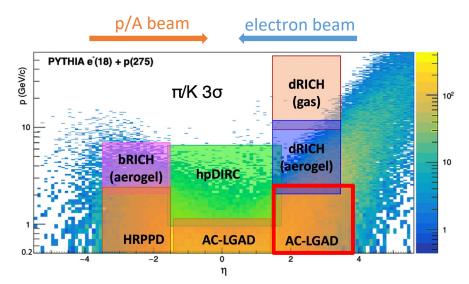
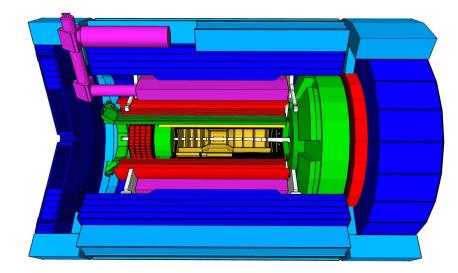
ePIC Forward TOF overview


Wei Li (Rice University)

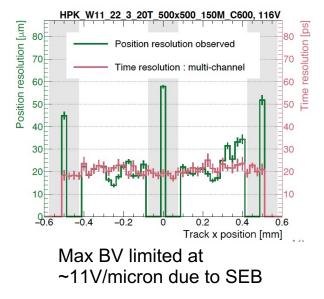

TOF and AC-LGADs Workfest@ePIC collaboration meeting July 26, 2024

BROOKHAVEN

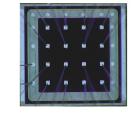
Jefferson La

AC-LGADs TOF system for PID

Latest envelope (link)

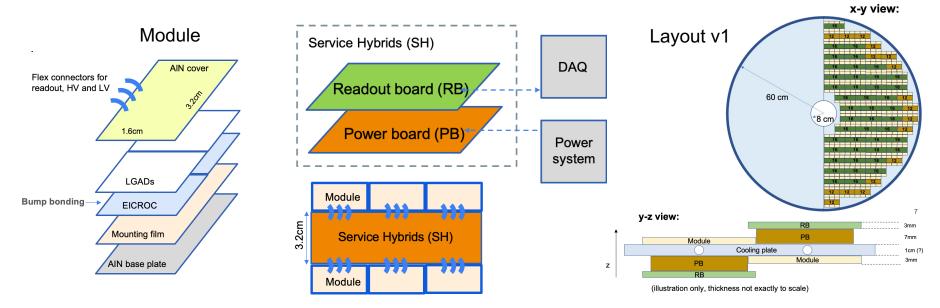

Detector	r (cm)	z (cm)	Momentum range for $3\sigma \pi/K$ separation
Barrel TOF	62 <r<69.5< td=""><td>-117.5<z<171.5< td=""><td>$0.2 < p_T < \sim 1.2 \text{ GeV}$</td></z<171.5<></td></r<69.5<>	-117.5 <z<171.5< td=""><td>$0.2 < p_T < \sim 1.2 \text{ GeV}$</td></z<171.5<>	$0.2 < p_T < \sim 1.2 \text{ GeV}$
Forward TOF	10.5 <r<60< td=""><td>185<z<193< td=""><td>0.2 < p < ~2.3 GeV</td></z<193<></td></r<60<>	185 <z<193< td=""><td>0.2 < p < ~2.3 GeV</td></z<193<>	0.2 < p < ~2.3 GeV

z thickness is now 8 cm, instead of 15 cm


FTOF requirements and R&D progress

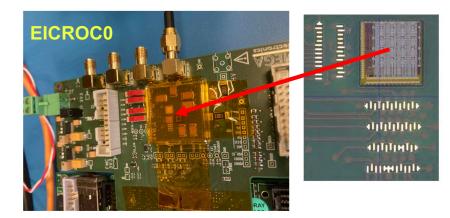
Current requirements (presented at FY23 EIC Project R&D - DAC Meeting)

	Area (m ²)	Channel size (mm ²)	# of Channels	Timing Resolution	Spatial resolution	Material budget
Barrel TOF	10	0.5*10	2.4M	30 → 35 ps	30 μm in $r \cdot \varphi$	0.01 X ₀
Forward TOF	1.4	0.5*0.5	5.6M	25 ps	30 μm in x and y	$0.08 \rightarrow 0.025 X_0$
B0 tracker	0.07	0.5*0.5	0.28M	30 ps	20 μm in x and y	$0.01 \rightarrow 0.05 X_0$
RPs/OMD	0.14/0.08	0.5*0.5	0.56M/0.32M	30 ps	140 μm in x and y	no strict req.


HPK Pixel Sensor (2x2 mm²)

Promising to achieve the requirements with 20micron thick, 0.5x0.5mm² pixel sensors Large sensors (32x32, 64x32) being produced by HPK and will be evaluated later this year

Initial FTOF layout design from the Jan. collaboration meeting

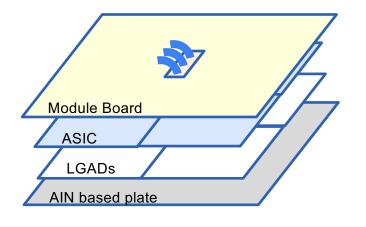

Continue refining the design in light of ongoing SH and module prototyping efforts

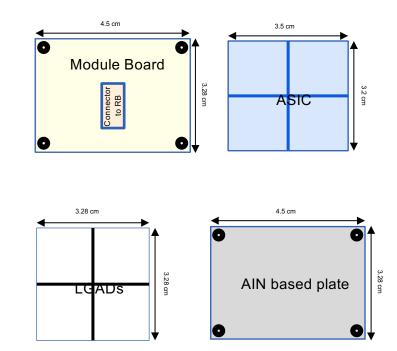
- Each SH servicing up to 32 ASICs (previously 16)
- Reduced envelope in z requires us to be more cautious with the layout design

FTOF ASICs - EICROC

ASIC requirements:

- Pixel size: 0.5x0.5 mm²
- Low jitter: <20ps
- Low power consumption: 1mV/channel

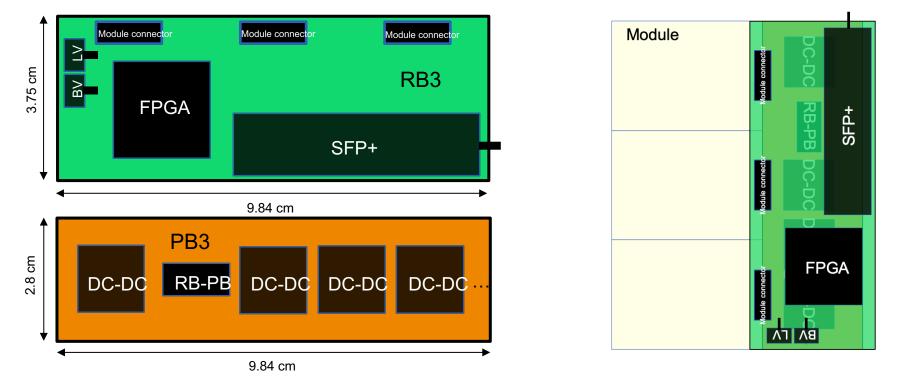



EICROC0 (4x4): first version LICROC1 (8x32?): intermediate size LICROC2 (32x32): full size LICROC3 (32x32): final (if needed)

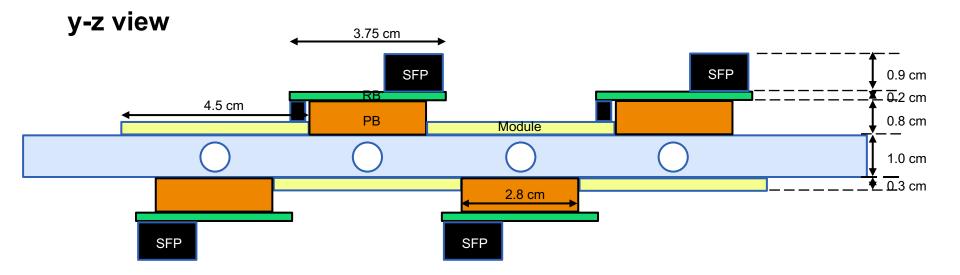
See talk by Christophe et. al. for latest development

FTOF module (updated)

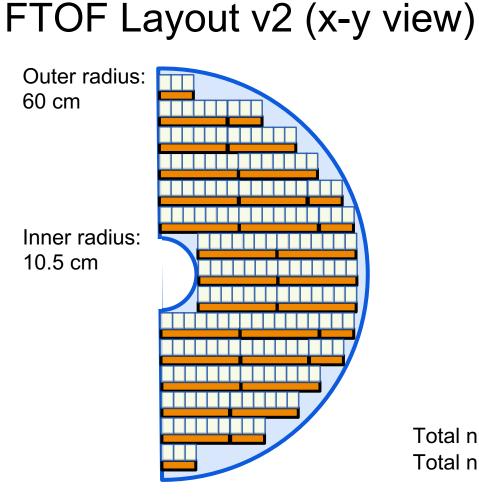
- 4 AC-LGADs sensor per module
- Each sensor: 32x32 pixels and 1.6x1.6 cm²



More realistic dimensions considering guard rings, mounting holes etc.


Service hybrids design and prototyping

Shortest readout (RB3) and power (PB3) board serving 3 modules or 12 ASICs


Another two longer versions serving 6 and 7 modules, or 24 and 28 ASICs

FTOF detector layout v2

Total thickness is about 5cm, which would fit within 8cm z-envelope

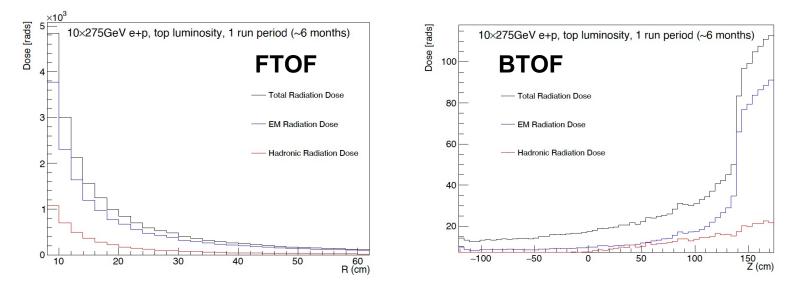
- Thickness of cooling and support structure still uncertain
- Need to take into account routing of cables and fibers as well

Row	modules	RB3	RB6	RB7	All RBs
1	3	1	0	0	1
2	9	1	1	0	2
3	12	0	2	0	2
4	14	0	0	2	2
5	16	1	1	1	3
6	17	1	0	2	3
7	14	0	0	2	2
8	14	0	0	2	2
9	14	0	0	2	2
10	17	1	0	2	3
11	16	1	1	1	3
12	14	0	0	2	2
13	12	0	2	0	2
14	9	1	1	0	2
15	3	1	0	0	1
Sum	184	8	8	16	32

Total number of modules: 184*4 = **736** Total number of service hybrids: 32*4 = **128**

Channel counts and power budget

	Counts		Power
Modules	736	Sensors	0.3kW
Sensors/ASICs	2944	EICROC	2.9kW
Data fiber pairs	128	DC-DC	2kW
LV cable pairs	128	FPGAs	0.5kW
HV cable pairs	128	Total	5.7kW


Assuming a single value of HV for each SH

Channels and power budget reduced from v1 by \sim 30% mainly because of the reduced envelope and # of SHs

FTOF radiation dose

Signal+beam gas (updated)

Xiao Huang

Assuming 10 years of operation and a safety factor of 2, the most inner part of FTOF expects ~ 100 kRad

Summary

FTOF has been making steady progress toward the final design

- Pixel AC-LGADs sensors of 20 microns in thickness meets the FTOF requirements. Next step is to scale up to large sensors to evaluate their performance and yields.
- EICROC1 design is in progress.
- Service hybrids design and prototyping are progressing very well (see details later in the frontend electronics talk).
- Refined layout design v2

Still lots of work and challenges ahead. We highly welcome more institutes/colleagues to join the efforts and take leading roles!

Backups