

Barrel TOF Mechanics, Cooling, Flex

Sushrut Karmakar, Sam Langley-Hawthorne et al (Purdue) Matthew Gignac et al (USCS) Oskar Hartbrich, Mathieu Benoit et al (ORNL)

ORNL is managed by UT-Battelle LLC for the US Department of Energy

Some Content Context

- An update from Sushrut and the Purdue crew
- An update/discussion contribution from Matthew
- A brief update on ORNL flex R&D and what it all means

Barrel Module Assembly Ideas

Matthew Gignac

July 15th 2024

Component dimensions

UC SANTA CRUZ

Thermal module: rough sketch

UC SANTA CRUZ

Stack-up for FEA

UC SANTA CRUZ

Open questions:

- Interface between hybrid flex and module support structure unclear to me. Do we need some type of thermal base plate?
- Readout hybrid design, especially the electrical version, still unclear. Suggest to follow ATLAS ITk Strips, 4 layer stack)

Hybrid flex stack up

Stackup

Layer	Thickness	Tolerance
Silkscreen	1mil (0.0254mm)	+/-0.2mil (0.00508mm)
Soldermask	1mil (0.0254mm)	+/-0.2mil (0.00508mm)
Top Copper	1oz (1.4mil, 35um)	
Polyimide Flexible Substrate	4mil (0.1016mm)	+-0.4mil (0.0102mm)
Bottom Copper	1oz (1.4mil, 35um)	
Soldermask	1mil (0.0254mm)	+/-0.2mil (0.00508mm)
Silkscreen	1mil (0.0254mm)	+/-0.2mil (0.00508mm)

Problems with design

UC SANTA CRUZ

- Acceptance holes between sensors (plus their inactive edge area, ~2x500um)
- Electronics need to be placed on top of the sensor surface
 - Thermal path through several layers of materials (PCB, glue, sensor, etc)
 - Introduces temperature gradients on top of the sensor surface that can affect performance
- Obviously desirable to have the ASICs off the sensor surface
- But need to satisfy timing and spatial requirements:
 - Strips need to run along the length of the stave to allow precision measurement in the bending plane
 - Connections to the front-end electronics should minimize path length and be similar across all channels

Alternative bTOF design

UC SANTA CRUZ

• An alternative design can solve both of these problems if we use both sides!

Alternative bTOF design

UC SANTA CRUZ

• An alternative design can solve both of these problems if we use both sides!

Alternative bTOF design

UC SANTA CRUZ

• An alternative design can solve both of these problems if we use both sides!

 Drawbacks: limits sensors to two segments (or relatively long, overarching bonds to inner segments), and bonding needs to be performed with sensitive components on backside

AC-LGAD ToF : Stave Prototype Updates

July 24th, 2024

Sushrut Karmarkar, Sam Langley-Hawthorne

- Updated glycol and water-cooling HTC values
 - Hand-calc estimation of HTC
 - Test Cases
 - o -10 C 50% Glycol/Water
 - O C 50% Glycol/Water
 - o 5 C Water
 - **o** 18 C Water
- ASIC Direct to Hybrid Flex

Next Steps:

• Verify convective heat transfer coefficient values with Ansys Fluent heat pipe simulations

- The heat transfer coefficient in the pipe makes a huge difference on the temperature profiles
- We need a good way to do CFD coupled heat transfer simulations for getting performance metrics for the stave

- Inputs that need refinement from Cooling group at EIC
 - What is the inlet pressure at AC-LGAD?
 - What is the flow rate available? currently estimated at 1m/s.
 - Currently assumed as flow conditions Reynold's number (Re) ~ 250,000 laminar flow regime

Heat transfer coefficient estimated to be (h) 1000 W/m²K decaying down to 360 W/m²K (at outlet) -- $k \cdot Nu_{I}$

- Need better pressure inlet and pressure outlet understanding for refining the simulations further
- Heat transfer coefficients in a pipe for water at room temp and pipe diameter of 5 mm used for the current estimation of *h*.

• Please can Yi/NCKU help with this – cross check my numbers ?

$$h = \frac{k \cdot Nu_L}{L}$$
Nusselt number (Nu_L)
$$= \frac{\left(\frac{f}{8}\right)(Re - 1000)Pr}{1 + 12.7\left(\frac{f}{8}\right)^{0.5}((Pr)^{\frac{2}{3}} - 1)}$$

For laminar flow in a pipe at room temp we found out the Prandtl (Pr) and Reynolds (Re) numbers using (Gnielinski,1976) and first Petukhov eq. (1970) :

 $f = (0.790 \ln Re - 1.64)^{(-2)}$

For flow conditions Re ~ 250,000

L = length (function of x); k = conductive heat transfer coefficient (W/mK)

- $Re = \frac{p * u * L}{v}$ (1)
 - p = density of fluid (kg/m^3)
 - u = flow speed (m/s)
 - L = diameter(m)
 - v = dynamic viscosity of fluid(Pa*s)
- Petukhov equation
 - $f = (0.790 \cdot \ln \text{Re} 1.64)^{-2}$ (2)
- Gnielinski equation

•
$$Nu = \left[\frac{(f/8)(\text{Re}-1000)Pr}{1+12.7\left(\frac{f}{8}\right)^{0.5}(Pr^{\frac{2}{3}}-1)}\right]$$
 (3)

- Nusselt Number(Nu) = $\frac{hL}{k}$ (4)
 - h = heat transfer coefficient (W/m²C)
 - L = characteristic length (m)
 - k = thermal conductivity (W/mC)
- $Q = hA(T_{Wall} T_{Fluid})$ (5)
 - Q = heat transfer (W)
 - h = heat transfer coefficient (W/m²C)
 - A = Contact Area (m²)

• $Q = mc_p(T_f - T_i)$ (6) • m = mass (kg) • c_p = specific heat of fluid $\left(\frac{J}{kgC}\right)$

- Process
 - $Re \rightarrow f \rightarrow Nu \rightarrow h \rightarrow Q \rightarrow Tf$
 - Use iterative calculation in MATLAB to determine temperature increase of fluid using equations 5 and 6

Note: potential for error in calculation, working to confirm values using heat pipe simulations in Ansys Fluent

18 C Water Cooling (Full Stave)

HTC Range 3364 to 2942 W/m^{2C}

5 C Water Cooling (Full Stave)

HTC Range 1162 to 799 W/m²C

ASIC Direct – miniSTAVE (300 mm long stave results) (18 C Water)

When ASIC is directly on the hybrid flex there is better heat dispersion

This was just a first attempt for miniSTAVE – same simulation for fullSTAVE in progress

Stave Bonding Process

Bonding complete for 590mm stave made from excess material

Apply Araldite 2011 mixed with 10% graphite by weight to each half of machined stave

Join stave halves around coolant pipe

Stave Curing Process

Cured 590 mm stave

Vacuum bag, cure at room temperature

Oak Ridge National Lab PCB Co-Curing Test

Mask contacts with release tape before curing in autoclave

Co-cured PCB

Asymmetrical layup (1 ply) causes expected warping

Continuity test successful for all channels post co-curing!

ORNL Flex & Interconnects

Oskar Hartbrich, Mathieu Benoit et al (ORNL)

ORNL is managed by UT-Battelle LLC for the US Department of Energy

ORNL Barrel Flex PCB (FPC)

- We planned to design and build an FPC prototype to "remotize" an ETROC
 - It seems getting ETROC specs is already difficult
 - Due to delays in CMS-ETL NP project, ORNL does not currently have ETROCs and a readout system on site
- We planned to build another FPC prototype for the thermal module mockup test
 - Delayed from trying to find vendor that can provide peel off film for contact protection during co-curing
 - Can do it ourselves with laser cut kapton foils now but now design might change?
- Have received FY24 money in June 24
- Have requested some money for FY25, but can largely work on carryover
 - Requested \$20k for Hachyia-san at Nara WU for Japanese FPC production
 - Can also pay Japanese manufacturer directly

ORNL Flip-Chip Machine

- SET FC-150 on its way to ORNL
 - Final inspection at manufacturer two weeks ago
- Will be fully equipped for interconnect studies, TOF module productions
 - Have funding for materials and engineering in FY'24 budget
 - Requested some more in FY'25

27

Summary

- Are double sided barrel staves better than single sided?
 - Needs more discussion with more experienced experts
- Purdue built mockup mini-staves
 - Extensive cooling simulations
 - Co-curing FPCs onto stave surface works well with test FPCs
- ORNL (basically) has flip-chip bonder on site now.

Backup Pictures

Additional slides

Expected Power from ASICs

• Each readout hybrid will service 4 sensor segments

• Each sensor segment will have 64 channels \rightarrow 256 channels per readout hybrid / sensor

III: SHNIH I:KU/

- Depending on the choice of ASIC, the power consumption may vary
 - Target was 1 mW/channel, but this may not be feasible
- As agreed during the collaboration meeting, we can assume 4 mW/channel
 - 1.024 W per readout hybrid or sensor
 - For thermal mechanical stave: 6 sensors/hybrids x 1.024 W = 6.144 W
 - For half-sized staves: 32 sensors/hybrids x 1.024 W = 32.77 W
 - For full-sized staves: 64 sensors/hybrids x 1.024 W = 65.54 W

Sushrut

UC SANTA CRUZ

https://www.sciencedirect.com/science/article/pii/S0168900213009819?via%3Dihub

Expected power: service hybrid

Where did Satoshi get these numbers?

Power budget of TOF

- BTOF power consumption is larger than the FTOF due to the size difference
- Sensors+ASICs and SH of FTOF are placed on the same board, so the cooling power is designed for the sum of the consumption
- SH of BTOF is located in a different place than sensors + ASICs

BT		
	Power	
Sensors	4kW	
FCFD	9.4kW	
DC-DC	3.3kW	
FPGA	1kW	S⊓ = 4.3KVV
Total	17.7kW	

	Power
Sensors	0.3kW
EICROC	3.6kW
DC-DC	2.5kW
FPGA	1kW
Total	7.4kW

FTOF

UC SANTA CRUZ