Digitization in ElCRecon for AC-LGAD subsystems

Prithwish Tribedy (BNL) ptribedy@bnl.gov

Team: Souvik Paul (SBU/BNL), Tommy Tsang (Kent/BNL), Adam Molnar (SCIPP/UCSC), Honey Khindri (IITM), Priyanshi Sinha (IISERTP), Suresh Karthik (WM), Michael Pitt (KU), Zvi Citron (BGU), Ammara Hussain (BNL-CCI), Branyelis Brito (BNL-CCI)

Join EICUG & ePIC collaboration meeting, Lehigh University, Jul 22-27, 2024

Quick summary of the current status

Recently we finished first implementation of the digitization model for AC-LGAD-based BTOF — work on other subsystems, FTOF and B0, is ongoing.

DO THISTORY	GEANT Hit
st commit date	Segmenter module (Neighbor finder)
<pre> @@ -0,0 +1,196 @@ 1 + // SPDX-License-Identifier: LGPL-3.0-or-later</pre>	
<pre>2 + // Copyright (C) 2024 Souvik Paul, Kolja Kauder, Prithwish Tribedy, Chun Yuen Tsang 3 + 4 + // A general digitization for BToFHit from simulation 5 + // 1. Smear energy deposit with a/sqrt(E/GeV) + b +</pre>	Digitization module (TDC/ADC)
<pre>6 + // 2. Digitize the energy with dynamic ADC range and add pedestal (mean +- sigma)</pre>	
<pre>7 + // 3. Time conversion with smearing resolution (absolute value) 8 + // 4. Signal is summed if the SumFields are provided 9 + // 10 + // Author: Souvik Paul, Chun Yuen Tsang 11 + // Date: 18/07/2024</pre>	Noise module (Jitter, slewing)
<pre>12 + 13 + 14 + #include <bitset> 15 + #include <evaluator dd4hepunits.h=""> 16 + #include <fmt format.h=""> 17 + #include <vector> 18 + #include <tgraph.h></tgraph.h></vector></fmt></evaluator></bitset></pre>	Reconstruction module

The digitization model for AC-LGAD system has step:

- Conversion of GEANT deposited energy into ADC/TDC
- Implementation of a charge-sharing
- Incorporating noise due to full readout chain

In ElCrecon has two modules: 1) Segmentation/neighbor finder, 2) Digitization/noise

Using BTOF as the reference example for digitization of AC-LGAD systems

Task at hand

GEANT hit

TOFBarrelRecHit.cellID = 18425070710973014364
TOFBarrelRecHit.position.x = 636.281799
TOFBarrelRecHit.position.y = 32.092369
TOFBarrelRecHit.position.z = 1077.500000
TOFBarrelRecHit.time = 4.227000
TOFBarrelRecHit.edep = 0.000184

Digitized hit with charge sharing TOFBarrelADCTDC.cellID = 18425352185949725020, 18425070710973014364, 18424789235996303708, 18424507761019593052, 18424507782494429532...

TOFBarrelADCTDC.charge = 359, 785, 359, 34, 34 ... TOFBarrelADCTDC.timeStamp = 197, 194, 197, 215, 215 ...

First challenge: Deciphering the cell ID

Cell ID helps to go to local co-ordinates & group cells together for signal sharing

1. Convert the ID to the 64-bit binary ID

18423381384371622236₍₁₀₎

2. Split the binary ID based on the identifier in the xml code. For Barrel ToF, the identifier is:

<id>system:8,layer:4,module:12,sensor:2,x:32:-16,y:-16</id>

У	x	Sensor	Module

Deciphering the cell-id is the first step & was our major challenge

Put cell in local co-ordinate, find edges & neighbors

Original ElCrecon:

- Pixels (cells) are populated in a regular grid from left edge to the right edge \bullet
- Original Y-direction pitch was 100 μ m instead of 500 μ m, X-direction no dead space

- Dead space in the left and right edges.
- Dead space between every nth cell.

Finding the boundaries are next steps

Put pixels in the right place:

Work in progress: Wrote an "UnevenCartesianGridXY" class to put dead space and pixels in the right place.

New "tof_barrel.xml":

<readouts

<readout name=""</pre> rtesianGridXY" grid_size_x="0.1*mm" grid_size_y="1*cm" grid_gap_x="0.01*mm" grid_gap_y="0.5*cm" start_x="-1.8*cm" end_x="1.8*cm" end_y="128*cm" gap_every_cell_x="64" gap_every_cell_y="4"/> <segmentation type="Une</pre> <id>system:8,layer:4,module:12,sensor:2,x:32:8,y:40:12,sx:52:2,sy:54:10</id> </readout> </readouts>

Don't have the accurate numbers, but they are free parameters. Can be adjusted easily.

Input from sensor+asic+RDO

Input from hardware on signal shape, charge spread, pre-Amp output

Energy & time to Peak (ADC) & TOA (TDC)

Event Generation & Transport:

- 250k µ– particles
- $0 \text{ GeV} \le p \le 30 \text{ GeV}$
- $0^\circ \le \Theta \le 180^\circ$

Time of Flight **⊕** Rise Time → Time of Arrival → TDC

Charge sharing: Strip geometry

- A hit in Strip H has a Gaussian-like distribution of charge vs distance (Charge shared inductively in sensor).
- The Gaussian peaks at the center of Strip H, and has a standard deviation in X and Y, that can be tuned (Property of AC-LGAD).
- The maximum distance to which Pixel H can induce charge can also be optimized.

10

Charge sharing: Pixel geometry

- A hit in Pixel H has a Gaussian-like distribution of charge vs distance (Charge shared inductively in sensor).
- The Gaussian peaks at the center of Pixel H, and has a standard deviation in X and Y, that can be tuned (Property of AC-LGAD).
- The maximum distance to which Pixel H can induce • charge can also be optimized.

Energy/ADC & time/TDC comparison

ADC and TDC distribution are final output consistent with GEANT input

Summary of the package

Charge Sharing

Distribute in neighbouring channels based on a Gaussian (trial) within sensor boundaries (Trial clustering using the center of weight technique)

Detector Noise

To do with input from ASIC testing data

Ext. parameters

Reference clock (T=25 ns) **Delay cells** Thresholds (Fixed gap)

https://github.com/ssedd1123/EICrecon

BTOFHitDigi.cc, BTOFHitDigi.h, BarrelTOFNeighborFinder.cc, BarrelTOFNeighborFinder.h in EICRecon/src/detectors/BTOF

BTOFHitDigi_factory.h in EICrecon/src/factories/digi

BTOFHitDigiConfig.h in EICrecon/src/algorithms/digi

Parameter	Value	
Rise time (Landau MPV)	0.45 ns	
Shape Width (Landau) = FWHM/2	0.293951 ns	
Amplitude (Landau)	-113.766 V	
MIP charge/energy	190000 fC.GeV ⁻¹	
Time period (Reference clock)	25 ns	
Std. Dev. in X, Y (Gaussian for charge sharing)	0.5 mm, 0.5 mm	
ToF Quantization time	0.02 ns	

https://github.com/ssedd1123/EICrecon/tree/main/src/detectors/BTOF

Other AC-LGAD systems

One square is four sensors Pixel AC-LGAD

RB7	All RBs
0	1
0	2
0	2
2	2
1	3
2	3
2	2
2	2
2	2
2	3
1	3
2	2
0	2
0	2
0	1
16	32

One square is one sensors

FTOF and B0 digitization in progress

14

Noise implementation

EICROCO ASIC

AC-LGAD ppRDO

PLL output 98.5 MHz clock distribution

Noise implementation in progress...

Clock jitter ~1.12 pS

Summary of Digitization in EICRecon

Importance:

- Crucial for realistic simulations driven by hardware parameters **Current Progress:**
- Digitization efforts for BTOF (first AC-LGAD), FTOF, and B0 are underway
- Package divided into two modules: **1.Segmentation**
 - 2.Digitization

Segmentation Module:

- Implementation of boundaries and gaps in sensors
- Ongoing understanding of geometry, gaps, and segmentation for FTOF and BO

Digitization Module:

- Noise implementation strategy developed, awaiting execution

Next Steps:

• Charge sharing model based on published sensor data is implemented (with room for adjustments)

• Assemble a team for reconstruction with digitized info. (including charge sharing and TDC with clock)

Thank you

17

Calculate energy for each pixel. Currently in GEANT, each stave of TOF is one entire unit.

Particles arriving at TOF

Currently: Signal is registered across a wide length of the TOF

Solution: Write a class that interface with UnevenCartesianGridXY to get cell boundaries

Particles arriving at TOF

Ideal: Signal should be confined to one sensor

"BarreITOFNeighborFinder" class is developed to find all cells in a sensor

Currently: Signal is registered across a wide length of the TOF

Simulation results: BarreITOFNeighborFinder is able to find sensors for each hit

Analog Signal, Voltage Threshold & ADC

- Landau-like analog signal.

- $(1 \le n \le 256)$ is converted to a 8-bit ADC code.
- Will be updated according to latest EICROC results.

Analog Signal & TDC

- Almost all hits occur in the 1st half-period of the clock(f = 40MHz). When the analog signal crosses V_{th_2} (Time of Arrival), the **START** signal flips from 0 to 1. When the clock cycle flips from the 1st to the 2nd halfperiod, the **STOP** signal flips from 0 to 1.
- Consecutive delay cells propagate the START signal (140 ps delay) and the STOP signal (120 ps delay) in parallel until the START signal crosses the STOP signal (Mathematically, **START-STOP** < 20 ps).

Quantization time of ePIC ToF detector

• The number of times the signals move ($1 \le n \le 1024$) is converted to a 10-bit TDC code.

Charge Sharing (Geometric effects)

- reconstruction accuracy of the hits.
- nearest neighbours.
- Reconstruction accuracy for Case-2 is greater than that for Case-1.

The position of the hit pixel and the number of charge-sharing neighbours has an effect on the

Reconstruction accuracy decreases as the pixel hit position changes from central to corner.

Central pixel has 8 nearest neighbours, edge pixel has 5 nearest neighbours and corner pixel has 3

Charge Sharing (More geometric effects)

