#### Ongoing Efforts to Study Gluon Saturation at RHIC and at the LHC

Xiaoxuan Chu, BNL

Joint EICUG/ePIC Collaboration Meeting July 22-27, 2024



gluon dynamics at small x

### **Gluon Saturation**



- Gluon density rapidly increases at small x: gluon splitting  $\rightarrow$  BFKL  $\rightarrow$  linear evolution
- Gluon saturation ( $Q^2 < Q^2_s$ ): gluon recombination  $\rightarrow$  BK  $\rightarrow$  non-linear evolution; gluon recombination = gluon splitting, gluon density stays tamped

## **Current Knowledge of nPDFs**



- LHC data in pPb collisions: low x but high  $Q^2$ ; DIS, DY and PHENIX  $\pi^0$  data: low/moderate  $Q^2$
- Nuclear gluon distributions still have large uncertainty at small x, low  $Q^2$ , and moderate  $Q^2$

# **Gluon Density at Small** x



Eskola, Paakkinen, Paukkunen, Salgado, EPJC 82 (2022) 413

- RHIC data can probe small x, small and moderate  $Q^2$  regions
- Evolution behavior of suppression, strong Cold Nuclear Matter effect at small x and  $Q^2$
- Amount of suppression varies between fits: data needed to constrain fits

## **Experimental Approaches**

Accessing gluon saturation ( $Q^2 < Q_s^2$ ) region:



- Larger A: easier to access gluon saturation in heavy nuclei than in nucleons; nucleon serves as baseline
- $\circ$  Smaller *x*: more forward production and lower  $p_T$
- Smaller b: more central collisions

#### **2. If Q^2 is small enough**: $Q \propto \frac{p_{T_1} + p_{T_2}}{2}$

 $\circ$  Smaller  $p_T$ : detector requirement for precision measurement

Scan  $Q^2$ , x, and  $Q_s$  by varying  $p_T$ , y, b, and A

## $x - Q^2$ phase space



Test universality of gluon saturation at various collision energies  $\rightarrow$  complete phase pace, full evolution:

- RHIC serves as intermediate energy colliders, accessing low and intermediate  $Q^2$ , share a similar phase space with forward production at the EIC
- LHC data can probe samller *x* region gaining from high collision energies

Test universality of gluon saturation by different probes:





#### **Possible measurements**

**Inclusive measurement for**  $R_{pA}$ : < 1 in forward direction, low  $p_T$ 

- Forward charged hadron,  $\pi^0$  production from RHIC and the LHC
- Forward open charm production from the LHC
- UPC J/psi production from the LHC

**Two-particle correlations for**  $C(\Delta \phi)$ : suppression in back-to-back correlation

- Forward back-to-back  $\pi^0$ /hadron correlation from RHIC
- Forward back-to-back charged hadron/jet correlation from the LHC

## **Inclusive Charged Particle at BRAHMS**



- Yields suppression R<sub>dAu</sub> < 1 at p<sub>T</sub> < 2 GeV; first hint of strong nuclear effect at small x?
- R<sub>cp</sub> is more pronounced in more central dAu collisions
- R<sub>cp</sub> decreases with increasing rapidity: scan *x* by varying rapidity

### **D** Meson Production at LHCb



CGC1: optical Glauber model; CGC2: c fragmentation function in a TMD framework

- More suppression of D<sup>0</sup> meson production at forward rapidity than backward direction
- Suppression at forward rapidity potentially depends on  $p_T$

#### Scan $Q^2$ and x by varying $p_T$ and y

#### $\pi^0$ and $h^{\pm}$ Production at LHCb

LHCb, PRL 131, 042302 (2023) LHCb, PRL 128, 142004 (2022)



9

#### **UPC VM Production at the LHC**



- Coherent VM extensively measured at LHC, sensitive to gluon density
- $\sigma(J/\psi)$  rises at low  $W_{\gamma N}^{Pb}$  (high  $x > 10^{-2}$ ), and plateaus above 40 GeV up to 400 GeV (low x down to  $10^{-4} - 10^{-5}$ )



Not the full list: ALICE, EPJC 81, 712 (2021) LHCb, JHEP 07, 117 (2022) CMS, PRL 131, 262301 (2023) LHCb, JHEP 06, 146 (2023)

#### **Possible Measurements**

**Inclusive measurement for**  $R_{pA}$ : < 1 in forward direction, low  $p_T$ 

- Forward charged hadron,  $\pi^0$  production from RHIC and the LHC
- Forward open charm production from the LHC
- UPC J/psi production from the LHC

**Two-particle correlations in**  $C(\Delta \varphi)$ : suppression in back-to-back correlation

- Forward back-to-back  $\pi^0$ /hadron correlation from RHIC
- Forward back-to-back charged hadron/jet correlation from the LHC

## **Di-hadron Correlations**

• **Di-hadron** as another observable provides further test, was first proposed by D. Kharzeev, E. Levin and L. McLerran from NPA 748 (2005) 627-640





Deletion of away-side peak in d+A relative to p+p as a saturation feature:

Suppression
Broadening

## **Di-hadron correlations at PHENIX**



- Scan x by varying rapidity: more suppression in forward-forward than middle-forward correlation
- Suppression increases in more central dAu collisions
- High pedestal in dAu compared to pp collisions

# **Double Parton Scattering in dAu?**



Comparison of p+p, p+Au and d+Au  $\rightarrow$  study the individual source of DPS

- **Compare pedestal**: DPS provides an explanation of higher pedestal in d+Au
- Compare away-side correlation → window open to studies of double parton distributions in nucleons:
  - q<sub>1</sub>,q<sub>2</sub> correlated: DPS will modify the correlation function
  - q<sub>1</sub>,q<sub>2</sub> uncorrelated: DPS will only enhance pedestal

### **Revisit dAu data at STAR**



- $\pi^0$  PID: much higher background in d+Au than p+p (Au); p+p and p+Au are similar
- Very high pedestal: d+Au > 5 times higher than p+p (Au); much larger combinatorial background in d+Au than p+p(Au)
- Correlation from d+Au is similar as p+p, but higher than p+Au

Di-  $\pi^0$  measuremtn favors cleaner p+Au collisions than d+Au collisions!

## **Di**- $\pi^0$ correlations at STAR



#### Gaussian (Area and width) at $\Delta \phi = \pi + \text{pedestal}$ Relative area: $\frac{Area_{pA}}{Area_{pp}}$



- Suppression at low  $p_T$  not high  $p_T$
- Suppression linearly depends on  $A^{1/3}$
- No broadening: other contributions not

negligible  $\rightarrow$  parton shower, fragmentation  $p_T$ see back up S26/27

#### **Future measurements at STAR**



- STAR forward upgrade of EMcal, Hcal and tracking at 2.5 < η < 4.0: expand observables
  - di-charged hadorn, di-jet,  $\gamma$ -hadron/jet, inclusive  $\gamma$ ...

# **Di-h Correlation Projections**



- Run24/25 di- $\pi^0$  projection: Best statistic indicates ~35% reduction of the statistical error compared to 2015 data
- **Run24/25 di-** $h^{\pm}$  **projection**: Higher statistic than di- $\pi^0$ ;  $\geq 80\%$  reduction of the statistical error compared to 2015 data; the strongest suppression expected at the lowest  $p_T$  where forward upgraded detectors can probe

# **Di-hadron Correlations at LHCb**



- Pure v<sub>2</sub> ( $|\Delta \eta|$ >2) at near-side peak; symmetric long-range component at near- and away-side peak
- Yield suppression in p+Pb at smallest x region → 10<sup>-5</sup> (over 100 times lower than RHIC); is broadening seen in p+Pb?
- Theory curve shows narrow peak as initial- and final-state gluons radiation not included

# **Di-jet Correlations at ATLAS**



- $\rho_I^{pPb} \sim 0.8$  at most forward, less suppression than RHIC dihadron,  $x_{Pb} \rightarrow 10^{-4}$ ; but  $Q^2 > \sim 800 \ GeV^2$ , too high?
- Width unchanged in p+p and p+Pb, same with RHIC di-hadron results

# Summary

- Numerous efforts have been made to search for gluon saturation, at different collision energies, with different observables, and through different measurements
- Several experiments from RHIC and the LHC have shown various degree of proof of gluon saturation, partially aligning well with the saturation models
  - $\circ$   $h^{\pm}$  production from BRAHMS
  - $\circ~$  D meson,  $\pi^0$  , and  $h^\pm$  production from LHCb
  - VM production from LHCb, CMS, ALICE
  - $\circ$  di-  $\pi^0$ /cluster correlation from PHENIX and STAR
  - $\circ$  di-  $h^{\pm}$  from LHCb
  - di-jet from ATLAS

Not the full list

•  $R_{pA}$  and  $C(\Delta \varphi)$  measured in forward direction, presented  $p_T$ , centrality/event activity, rapidity, and A as CGC predicted; while the predicted broadening phenomena was not observed with  $C(\Delta \varphi)$ 

# Summary and Outlook

- Color Glass Condensate calculations are now entering the NLO era  $(\alpha_s \ln(\frac{1}{x}) \sim O(1), NLO = \alpha_s^2 \ln(\frac{1}{x}));$  LO cannot explain entire data
  - Heavy quark production (Hanninen et al, 2022)
  - $\circ$  Exclusive J/ψ, ρ, φ, Y (Penttala, H.M, 2022)
  - Hadron production in pA (Shi et al, 2021; H.M, Tawabutr, 2023)
  - Dihadron correlations in DIS (Caucal et al 2023)

- Experiments are also entering high-precision measurement level; looking forward to
  - $\circ~$  ATLAS Fcal dijet
  - LHCb forward open charm, direct photon, and correlation
  - $\circ$   $\,$  Forward VM from the LHC  $\,$
  - Measurements with STAR Forward Upgrade
  - Future measurements with ALICE FoCal Upgrade

Not the full list

## Back up



Double parton distributions (**DPDs**) contribute to correlated  $\pi^0$ s :  $F_{ik}(x_1, x_2, y)$ 

- between x<sub>1</sub> and x<sub>2</sub> dependence (longitudinal correlations)
- between x<sub>1</sub>, x<sub>2</sub> dependence and y (transverse correlations)

#### **PYTHIA Kinematics:** x<sub>1</sub>, x<sub>2</sub> and Q<sup>2</sup>



- $x_1$ ,  $x_2$  and  $Q^2$  increase with  $p_T$ , low  $p_T$  helps to access saturation regime
- $x_1(x_2)$  dominates at high (low) x regime; well separated

### **Di**- $\pi^0$ correlations at STAR



- Suppression increases with \*E.A., highest E.A. data is consistent with predictions at b = 0; E.A. is not identical to centrality
- No broadening: see back up S26/27, NLO contribution not negligible  $\rightarrow$  parton shower, fragmentation  $p_T$

\*E.A. (event activity): energy deposited in BBC in nuclei-going direction



rcBK: J. L. Albacete et al., PRD 99, 014002 (2019)

# **Broadening in Simulation**



- Intrinsic  $k_T$ , parton shower, and  $p_T^{frag}$  can lead to broad near- and away-side peaks.
- Different dominate effects lead to a broad away/near-side peak; use near-side peak to calibrate

|                                                         | Near-side $\Delta \phi$ RMS | Away-side $\Delta \phi$ RMS |
|---------------------------------------------------------|-----------------------------|-----------------------------|
| k <sub>T</sub>                                          | 0.21                        | 0.25                        |
| $k_T + IS$                                              | 0.30                        | 0.72                        |
| $k_T + IS + FS$                                         | 0.65                        | 0.81                        |
| $k_T + \mathrm{IS} + \mathrm{FS} + p_T^{\mathrm{frag}}$ | 1.00                        | 1.00                        |

#### Simulation at RHIC



- Saturation implemented in simulation by parameterizing intrinsic  $Q_S \sim k_T$ : at RHIC energy, for proton:  $k_T \cong 0.5 \ GeV/c$ ; for Au:  $k_T \leq 0.9 \ GeV/c$
- Preliminary simulation studies: with intrinsic  $k_T$ , PS, and  $p_T^{frag}$  turned on, away-side width stays unchanged at  $k_T > 0.5 \ GeV/c$ , broadening is not expected to occur in p+Au compared to p+p at RHIC; explanation for the experimental results?