HIGHER ORDER ELECTROWEAK **RADIATIVE CORRECTIONS USING COVARIANT APPROACH**

MAHUMM GHAFFAR PHD CANDIDATE MEMORIAL UNIVERSITY OF NEWFOUNDLAND SUPERVISORS: DR. ALEKSANDRS ALEKSEJEVS AND DR. SVETLANA BARKANOVA

July 22, 2024 Mahumm Ghaffar

2024 EIC User Group Early Career Workshop

1/20

Motivation

- Motivation
- Introduction to covariant approach

- Motivation
- Introduction to covariant approach
- Full electroweak e^-p scattering with tree level, NLO and NNLO level graphs

- Motivation
- Introduction to covariant approach
- Full electroweak e^-p scattering with tree level, NLO and NNLO level graphs
- distinguishable target particle

Parity violating asymmetry calculations via leptonic/hadronic tensor for

- Motivation
- Introduction to covariant approach
- Full electroweak e^-p scattering with tree level, NLO and NNLO level graphs
- distinguishable target particle

Results

Parity violating asymmetry calculations via leptonic/hadronic tensor for

MOTIVATION

- make predictions that match experiments to one part in ten billion.
- related to Higgs boson etc.
- no concrete evidence of BSM at 13 TeV centre-of-mass energy at LHC.
- directly accessible at existing high-energy colliders.

• The theory of Standard Model (SM) \rightarrow unifies Electromagnetic, Weak and Strong interactions \rightarrow can

• SM limitations \rightarrow don't include gravity, dark matter/dark energy existence, hierarchies of scale

• Theoretical door open for Beyond the SM (BSM) physics to be observed at TeV scale \rightarrow **but** till date

Low energy precision physics becomes important \rightarrow provides a way to reach mass scales not

• We are doing precision physics with full electroweak Parity Violating Asymmetry (A_{PV}) \rightarrow achieve by calculating the higher order corrections up to NNLO (α^4) using Covariant/ leptonic tensor approach.

PARITY VIOLATING ASYMMETRY

Formula:
$$A_{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L}$$
, where:

- For QED, $|M_{\gamma R}| = |M_{\gamma L}|$, numerator contains just weak+electroweak cross terms.
- Denominator contains just QED terms as m_{Z} (90 GeV)> $m_{\rho-}(0.5 \text{ MeV})$

•
$$A_{PV} = \frac{|M_{ZZ}|_R^2 - |M_{ZZ}|_L^2 + |M_{\gamma Z}|_R^2 - |M_{\gamma Z}|_R^2}{|M_{\gamma \gamma}|_R^2 + |M_{\gamma \gamma}|_L^2}$$

$\sigma_R \propto |M_R|^2$ and $\sigma_L \propto |M_L|^2$

 $|M_{\gamma Z}|_L^2$

- particles in the loop.

• Elastic e^-p scattering is studied up to the NNLO level considering all SM

• A longitudinally polarized e^- scatters off an unpolarized proton target

Covariant Approach

- particles in the loop.

July 22, 2024 Mahumm Ghaffar

• Elastic e^-p scattering is studied up to the NNLO level considering all SM

• A longitudinally polarized e^- scatters off an unpolarized proton target

Covariant Approach

- particles in the loop.

July 22, 2024 Mahumm Ghaffar

• Elastic e^-p scattering is studied up to the NNLO level considering all SM

• A longitudinally polarized e^- scatters off an unpolarized proton target

Covariant Approach

- particles in the loop.

July 22, 2024 Mahumm Ghaffar

• Elastic e^-p scattering is studied up to the NNLO level considering all SM

• A longitudinally polarized e^- scatters off an unpolarized proton target

Covariant Approach

- particles in the loop.

July 22, 2024 Mahumm Ghaffar

• Elastic e^-p scattering is studied up to the NNLO level considering all SM

• A longitudinally polarized e^- scatters off an unpolarized proton target

Covariant Approach

- particles in the loop.

July 22, 2024 Mahumm Ghaffar

• Elastic e^-p scattering is studied up to the NNLO level considering all SM

• A longitudinally polarized e^- scatters off an unpolarized proton target

Covariant Approach

- particles in the loop.

July 22, 2024 Mahumm Ghaffar

• Elastic e^-p scattering is studied up to the NNLO level considering all SM

• A longitudinally polarized e^- scatters off an unpolarized proton target

Covariant Approach

- particles in the loop.

July 22, 2024 Mahumm Ghaffar

• Elastic e^-p scattering is studied up to the NNLO level considering all SM

• A longitudinally polarized e^- scatters off an unpolarized proton target

Covariant Approach

- particles in the loop.

July 22, 2024 Mahumm Ghaffar

• Elastic e^-p scattering is studied up to the NNLO level considering all SM

• A longitudinally polarized e^- scatters off an unpolarized proton target

Covariant Approach

- particles in the loop.

July 22, 2024 Mahumm Ghaffar

• Elastic e^-p scattering is studied up to the NNLO level considering all SM

• A longitudinally polarized e^- scatters off an unpolarized proton target

 (M, p_2)

Covariant Approach

- particles in the loop.

July 22, 2024 Mahumm Ghaffar

• Elastic e^-p scattering is studied up to the NNLO level considering all SM

• A longitudinally polarized e^- scatters off an unpolarized proton target

Covariant Approach

 (M, p_2)

QED

$i\mathcal{M} = \bar{u}(k_2)(-ie\gamma_{\mu})u(k_1)\frac{-i}{t}\bar{u}(p_2)(-ie\Gamma^{\mu}_{\gamma-p})u(p_1)$

QED

 $i\mathcal{M} = \bar{u}(k_2)(-ie\gamma_{\mu})u(k_1)\frac{-i}{t}\bar{u}(p_2)(-ie\Gamma^{\mu}_{\gamma-p})u(p_1)$

 $\Gamma^{\mu}_{\gamma-p} = F^p_1(t)\gamma^{\mu} + \frac{i\sigma^{\mu\nu}q_{\nu}}{2M}F^p_2(t)$

QED

 $i\mathcal{M} = \bar{u}(k_2)(-ie\gamma_{\mu})u(k_1)\frac{-i}{t}\bar{u}(p_2)(-ie\Gamma^{\mu}_{\gamma-p})u(p_1)$

$$\Gamma^{\mu}_{\gamma-p} = F^p_1(t)\gamma^{\mu} + \frac{i\sigma^{\mu\nu}q_{\nu}}{2M}F^p_2(t)$$

 $F_1(t)$ and $F_2(t) \rightarrow$ Dirac and Pauli form factors depending on momentum transfer "t".

OFD

 $i\mathcal{M} = \bar{u}(k_2)(-ie\gamma_{\mu})u(k_1)\frac{-i}{t}\bar{u}(p_2)(-ie\Gamma^{\mu}_{\gamma-p})u(p_1) \qquad i\mathcal{M} = \bar{u}(k_2)(-ie(a_v\gamma_{\mu} + a_p\gamma_{\mu}\gamma_5))u(k_1)\frac{-i}{t - M_z^2}\bar{u}(p_2)(-ie\Gamma^{\mu}_{Z-p})u(p_1)$

$$\Gamma^{\mu}_{\gamma-p} = F^p_1(t)\gamma^{\mu} + \frac{i\sigma^{\mu\nu}q_{\nu}}{2M}F^p_2(t)$$

 $F_1(t)$ and $F_2(t) \rightarrow \text{Dirac}$ and Pauli form factors depending on momentum transfer "t".

OFD

 $i\mathcal{M} = \bar{u}(k_2)(-ie\gamma_{\mu})u(k_1)\frac{-i}{t}\bar{u}(p_2)(-ie\Gamma^{\mu}_{\gamma-p})u(p_1) \qquad i\mathcal{M} = \bar{u}(k_2)(-ie(a_v\gamma_{\mu} + a_p\gamma_{\mu}\gamma_5))u(k_1)\frac{-i}{t - M_7^2}\bar{u}(p_2)(-ie\Gamma^{\mu}_{Z-p})u(p_1)$

$$\Gamma^{\mu}_{\gamma-p} = F^p_1(t)\gamma^{\mu} + \frac{i\sigma^{\mu\nu}q_{\nu}}{2M}F^p_2(t)$$

 $F_1(t)$ and $F_2(t) \rightarrow \text{Dirac}$ and Pauli form factors depending on momentum transfer "t".

 $\Gamma^{\mu}_{Z-p} = f_1^p(t)\gamma^{\mu} + \frac{i\sigma^{\mu\nu}q_{\nu}}{2M}f_2^p(t) + g_1^p(t)\gamma^{\mu}\gamma_5$

OFD

 $i\mathscr{M} = \bar{u}(k_2)(-ie\gamma_{\mu})u(k_1) - \frac{-i}{t}\bar{u}(p_2)(-ie\Gamma^{\mu}_{\gamma-p})u(p_1)$

$$\Gamma^{\mu}_{\gamma-p} = F^p_1(t)\gamma^{\mu} + \frac{i\sigma^{\mu\nu}q_{\nu}}{2M}F^p_2(t)$$

 $F_1(t)$ and $F_2(t) \rightarrow \text{Dirac}$ and Pauli form factors depending on momentum transfer t''.

WEAK

$$i\mathcal{M} = \bar{u}(k_2)(-ie(a_v\gamma_{\mu} + a_p\gamma_{\mu}\gamma_5))u(k_1)\frac{-i}{t - M_Z^2}\bar{u}(p_2)(-ie\Gamma_{Z-\mu}^{\mu})u(k_1)\frac{-i}{t - M_Z^2}\bar{u}(p_2)(-ie\Gamma_{Z-\mu}^{\mu})u(k_1)u$$

$$\Gamma^{\mu}_{Z-p} = f_1^p(t)\gamma^{\mu} + \frac{i\sigma^{\mu\nu}q_{\nu}}{2M}f_2^p(t) + g_1^p(t)$$

 $f_1^p(t), f_2^p(t)$ and $g_1^p(t) \rightarrow$ weak electric, magnetic and axial vector form factors.

OFD

 $i\mathscr{M} = \bar{u}(k_2)(-ie\gamma_{\mu})u(k_1) - \frac{-i}{t}\bar{u}(p_2)(-ie\Gamma^{\mu}_{\gamma-p})u(p_1)$

$$\Gamma^{\mu}_{\gamma-p} = F^p_1(t)\gamma^{\mu} + \frac{i\sigma^{\mu\nu}q_{\nu}}{2M}F^p_2(t)$$

 $F_1(t)$ and $F_2(t) \rightarrow \text{Dirac}$ and Pauli form factors depending on momentum transfer t''.

WEAK

$$i\mathcal{M} = \bar{u}(k_2)(-ie(a_v\gamma_\mu + a_p\gamma_\mu\gamma_5))u(k_1)\frac{-i}{t - M_Z^2}\bar{u}(p_2)(-ie\Gamma_{Z-\mu}^\mu)u(k_1)\frac{-i}{t - M_Z^2}$$

$$\Gamma^{\mu}_{Z-p} = f_1^p(t)\gamma^{\mu} + \frac{i\sigma^{\mu\nu}q_{\nu}}{2M}f_2^p(t) + g_1^p(t)$$

 $f_1^p(t), f_2^p(t)$ and $g_1^p(t) \rightarrow$ weak electric, magnetic and axial vector form factors.

$$a_{v} = \frac{I^{3} - 2\sin^{2}\theta_{W}Q_{f}}{2\sin\theta_{W}\cos\theta_{W}}, \quad a_{p} = \frac{I^{3}}{2\sin\theta_{W}\cos\theta_{W}}, \text{ where}$$
$$Q_{f} = -1(e^{-}) \text{ and } I_{3} = -\frac{1}{2}.$$

LEPTONIC TENSOR AND INTRODUCTION TO COVARIANT APPROACH

LEPTONIC TENSOR AND INTRODUCTION TO COVARIANT APPROACH

 First introduced by Bardin and Shumeiko in 1976 (Nuclear Physics **B127**) to extract the infrared divergence from the lowestorder bremsstrahlung cross section.

LEPTONIC TENSOR AND INTRODUCTION TO COVARIANT APPROACH

- First introduced by Bardin and Shumeiko in 1976 (Nuclear Physics **B127**) to extract the infrared divergence from the lowestorder bremsstrahlung cross section.
- Recently used by Afanasev et al. (Phys.) Rev. D 66) to calculate QED radiative corrections in processes of exclusive Pion electroproduction.

8/20

COVARIANT APPROACH WITH LEPTONIC-HADRONIC TENSORS

 The differential cross section of general lepton-lepton/hadron scattering can be obtained by:

 $d\sigma \sim L^{\mu\nu}L_{\mu\nu}$

• where $W_{\mu\nu}$ is the hadronic tensor which in case of elastic e^-p scattering:

$$W_{\mu\nu} = H_1 g_{\mu\nu} + H_2 p_{1\mu} p_{1\nu} + H_3 p_{2\mu} p_{2\mu}$$

where p_1 and p_2 are incoming and outgoing protons momenta. H_1 , H_2 , H_3 , H_4 , H_5 and H_6 are the hadronic structure functions which can be extracted from experimental data.

$$_{\nu}$$
 or $d\sigma \sim L^{\mu\nu}W_{\mu\nu}$

$P_{\nu} + H_4 p_{1\mu} p_{2\nu} + H_5 p_{2\mu} p_{1\nu} + H_6 \epsilon_{\mu,\nu,p_1,p_2}$

QED AND ELECTROWEAK HADRONIC COUPLINGS WITH FORM FACTORS

$$\begin{split} \Gamma^{\mu}_{\gamma-p}(q^2) &= ieCnp2\left(f2p\gamma^{\mu} + gp\gamma_L\gamma^{\mu}\omega_- + gp\gamma_R\gamma^{\mu}\omega_+ - \frac{f2p(p_1^{\mu} + p_2^{\mu})}{2m_p}\right) \\ \Gamma^{\mu}_{Z-p}(q^2) &= -ieCnp2\left(F2W\gamma^{\mu} + gpz_L\gamma^{\mu}\omega_- + gpz_R\gamma^{\mu}\omega_+ - \frac{F2W(p_1^{\mu} + p_2^{\mu})}{2m_p}\right) \end{split}$$

$$\Gamma^{\mu}_{Z-p}(q^2) = -ieCnp2\left(F2W\gamma^{\mu} + gpz_L\gamma^{\mu}\omega_{-} + gpz_L\gamma^$$

 $F2W = \frac{F2Vp - 4\sin^2\theta_W f2p}{4\cos\theta_W \sin\theta_W} \to \text{EW form factor}$

 $gp\gamma_L = gp\gamma_R = f1p(0) \rightarrow$ Electric form factor

$$Cnp2 = \left(\frac{\Lambda^2}{\Lambda^2 - t}\right)^2, \quad \Lambda = \sqrt{0.83} \ m_p^2$$

or
$$gpz_{(L,R)} = \frac{F1Vp - 4\sin^2\theta_W f1p \pm G1p}{4\sin\theta_W \cos\theta_W}$$

 $G1p = 1.267 \rightarrow$ Axial form factor

F(1,2)Vp = f(1,2)p - f(1,2)n

Full Electroweak Tree level Graphs

July 22, 2024 Mahumm Ghaffar

Full Electroweak Tree level Graphs

Full Electroweak Tree level Graphs

Full Electroweak Tree level Graphs

Full Electroweak Tree level Graphs

Full Electroweak Tree level Graphs

TREE-LEVEL LEPTONIC TENSOR (α -ORDER)

 For tree-level upper part of the diagram (say e⁻p scattering), one can calculate leptonic tensor which is:

$$L^{0}_{\mu\nu} \propto 4\pi\alpha((l_1)g_{\mu\nu} + (l_2)k_{2\mu}k_{1\nu} + (l_3)k_{1\mu}k_{2\nu} + \dots)$$

where k_1 , k_2 are incoming and outgoing e^- momenta and $l_{1,2..}$ are tree level leptonic tensor structure functions.

e

307 graphs

e

NEXT TO THE LEADING ORDER (NLO) LEPTONIC TENSOR (α^2 -ORDER)

• The NLO leptonic tensor can be obtained by multiplying tree-level upper diagram with the sum of oneloop level self energy (SE) and triangular diagrams.

$$L_{\mu\nu}^{NLO} = (m_1)g_{\mu\nu} + (m_2)k_{1\nu}k_{2\mu} + (m_3)k_{1\mu}k_{2\nu} + (m_4)k_{1\mu}k_{1\nu} + (m_5)k_{2\mu}k_{2\nu} + \dots$$

Where $m_{1,2,3...}$ are leptonic structure functions which depend on the momentum transfer "t" and written in terms of Passarino-Veltman integral functions. We used LoopTools Mathematica package to calculate them.

In total 307 graphs SE and triangular graphs.

14/20

NEW RESULTS: OED AND ELECTROWEAK NNLO LEVEL LEPTONIC TENSOR (α^3 -ORDER)

Tree level, NLO and NNLO level A_{PV} for e^-p scattering versus θ_{CM} using QWEAK kinematics

 (e^-p) Tree level, NLO and NNLO level A_{PV} versus θ_{CM}

16/20

Tree level, NLO and NNLO level A_{PV} for e^-p scattering versus θ_{CM} using QWEAK kinematics

 (e^-p) Tree level, NLO and NNLO level A_{PV} versus θ_{CM}

$$(E_{beam} = 1.16 \ GeV, \ \theta_{CM} = 14$$

---- Tree $A_{PV} \sim -298.9 \ p_{PV}$
---- NLO $A_{PV} \sim -239 \ pp_{PV}$
..... NNLO $A_{PV} \sim -230 \ p_{PV}$

QWEAK Measured

 $\sim -226.5 \pm 7.3$ (statistical) ± 5.8 (systematic) ppb

Phys. Rev. C 101, 055503

NLO AND NNLO LEVEL CORRECTION FACTORS

• The correction factors depend upon the scattering angle θ which appears in momentum transfer as

 $t = (k_2 - k_1)^2 =$

where,

 $p_{in} = p_{out}$

Corrected $A_{PV}\% = \left(\frac{Tree\ level}{1}\right)$

$$= -2 p_{in}^2 \left[1 - Cos(\theta)\right]$$

$$\left(\frac{A_{PV} - (NLO, NNLO)A_{PV}}{Tree \ level \ A_{PV}}\right) \times 100$$

NLO and NNLO level Corrected A_{PV} versus θ_{CM}

NLO and NNLO level Corrected A_{PV} Asymmetry with Correction factors in percentage for QWEAK kinematics

 $(\theta = 14.6^{\circ})$

NLO level Corrected $A_{PV} = 19.9 \%$ Quadratic level Corrected $A_{PV} = 22.5$ % --- Total Corrected $A_{PV} = 22.9\%$

Tree level, NLO and NNLO level A_{PV} for e^-p scattering versus θ_{CM} using P2 kinematics

 $(e^{-}p)$ Tree level, NLO and NNLO level A_{PV} versus θ_{CM}

 $(E_{beam} = 155 \ MeV, \ \theta_{CM} = 39.97^{0})$ --- Tree $A_{PV} \sim -95.6 \ ppb$ NNLO (Reducible Two loop) $A_{PV} \sim -71.6 \ ppb$

Tree level, NLO and NNLO level A_{PV} for e^-p scattering versus θ_{CM} using P2 kinematics

 $(e^{-}p)$ Tree level, NLO and NNLO level A_{PV} versus θ_{CM}

 $(E_{beam} = 155 \ MeV, \ \theta_{CM} = 39.97^{0})$ --- Tree $A_{PV} \sim -95.6 \ ppb$ NNLO (Reducible Two loop) $A_{PV} \sim -71.6 \ ppb$

P2 Proposed $A_{PV} \sim -67.34 \ ppb$

RESULTS:

- For completeness, work in progress to include soft and hard photon bremsstrahlung cross sections in the results.
- effects in electron-proton scattering.
- physics beyond the Standard Model at the precision frontier.

• Next goal is to consider the polarized proton target and study the A_{PV}

• We make predictions for the e^-p NNLO level radiative corrections. These theoretical predictions will be important for many experimental programs such as QWEAK, P2, EIC and MOLLER (background studies) searching for

We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC) for this project.

REFERENCES FOR BOX DIAGRAMS

[1] M. Gorchtein, Phys. Rev. C 73, 055201 (2006)

[2] Peter G. Blunden et al., Physical Review Letters 91(14)

Backup Slides

ELECTROWEAK LEPTONIC TENSOR STRUCTURE FUNCTIONS

• In case of tree level polarized e^-p scattering:

• With photon (γ) as a mediator \rightarrow **Five** leptonic tensors

 $g^{\mu\nu}$, $k_{2}^{\mu}k_{1}^{\nu}$, $k_{1}^{\mu}k_{2}^{\nu}$, $\epsilon^{s_{1}\mu\nu k_{1}}$, $\epsilon^{s_{1}\mu\nu k_{2}}$

where $s_1 \rightarrow$ helicity reference vector of the incoming electron.

• With Z boson or γ Z mixing \rightarrow **Eight** leptonic tensors

 $g^{\mu\nu}$, $k_2^{\mu}s_1^{\nu}$, $k_2^{\nu}s_1^{\mu}$, $k_1^{\mu}k_2^{\nu}$, $k_2^{\mu}k_1^{\nu}$, $\epsilon^{s_1\mu\nu k_1}$, $\epsilon^{s_1\mu\nu k_2}$, $\epsilon^{\mu\nu k_1k_2}$

NLO LEVEL AND QUADRATIC LEVEL LEPTONIC TENSOR STRUCTURE FUNCTIONS

- In case of one loop level polarized e^-p scattering:
- With photon (γ), Z boson or γ Z mixing \rightarrow **19** leptonic tensors
- In case of quadratic level polarized e^{-p} scattering:
- With photon (γ), Z boson or γ Z mixing \rightarrow **21** leptonic tensors

