

ER1 babyMOSS Tests at FTBF and BASE - updates -

Previous report given on June 17, 2024: <u>https://indico.bnl.gov/event/23845/</u>

Zhenyu Ye LBNL

RKELEY LAB ALICE ITS3 ER1 – MOSS and babyMOSS Sensors

babyMOSS Beam Tests at FTBF

LBL/UCB: Tucker Hwang, Zhenyu Ye; UIC: Danush Shekar, (Abhishek Hingrajiya, Grigory Nigmatkolov)

- May 22-June 4: commissioned a 7-plane babyMOSS telescope with 120 GeV protons
 - Took data to study the sensor performance with different incident angles between 0-75 degree
 - Issues:
 - Intermittent power loss that led to interruptions to data taking
 - Synchronization loss of the DUT that compromised the efficiency calculation
 - Significant secondary particles in the DUT holder at large incident angles that led to higher occupancy in the reference planes after the DUT
- June 26-July 12: took data with an improved setup at FTBF
 - Fixed the power cable connection that led to intermittent power losses
 - Reduced secondary particle production with modified babyMOSS holders
 - Got rid of synchronization losses with improved data taking and analysis procedures
 - Data analysis is nearly complete to extract efficiency, resolution, cluster size

babyMOSS Beam Tests at FTBF

babyMOSS Telescope at Fermilab Test Beam Facility

A 120 GeV proton beam event

babyMOSS SEE Tests at BASE

6

babyMOSS SEL Tests at BASE

- LBL/UCB: Yu Hu, Barbara Jacak, Beatrice Liang-Gilman, Shujie Li, <u>Anjali Nambrath, Emma Yeats, Zhenyu Ye;</u>
- CERN: Hartmut Hillemanns; KU: Nicola Minafra; UC Riverside: Barak Schmookler
- May 22-23:
 - Initial commission of the setup with motion-controlled collimators
 - Scan in X and Y to search for SEL-sensitive circuits with 1.5 (1.2) mm gap collimator in X (Y)
 - Scan in X and Y to search for SEL-sensitive circuits with 0.2 mm gap collimators
- July 1:
 - Measure the SEL and DAC SEU cross-section as a function of LET
 - Scan in Y to search for SEL-sensitive circuits with 0.2 mm gap collimator
- Data analysis is nearly complete to extract cross-sections and locations of sensitive circuits on babyMOSS

Berkeley Accelerator Radiation Facility

- Berkeley Accelerator Space Effects Facility, LBNL <u>https://cyclotron.lbl.gov/base-rad-effects</u>
 - Heavy ions with fluxes up to $10^7 \text{ cm}^{-2}\text{s}^{-1}$ and LET between 1-100 MeV/(mg/cm²)

Ion	Cocktail (AMeV)	Energy (MeV)	Z	Α	LET (Entrance) (MeV/mg/cm2)	Range in Si (Max) (µm)
В	10	108.01	5	11	0.89	307.2
0	10	183.47	8	18	2.19	222.2
Ne	10	216.28	10	22	3.49	166.1
Si	10	291.77	14	29	6.09	132.1
Ar	10	400.00	18	40	9.74	116.6
V	10	508.27	23	51	14.59	93.9
Cu	10	659.19	29	65	21.17	84.6
Kr	10	885.59	36	86	30.86	84.1
Y	10	928.49	39	89	34.73	68.9
Ag	10	1111.92	47	107	46.92	60.5
Xe	10	1232.55	54	124	58.78	49.0
Au*	10	1955.87	79	197	86.38	54.8

• Proton and neutron beams are also available for SEE, TID, and NIEL studies

babyMOSS SEL Tests at BASE

ePit

Hitmap for 1.5/1.2mm-Collimator Calibration

Hitmap

11

Hitmap for 0.2/0.2mm-Collimator Calibration

Beam	Comment	Collimator (x,y)	Sensor (region, col, row)	Transformed Collimator (x,y) in mm	Sensor (x,y) in mm	Collimator-Sensor (x,y) Difference in mm
Xe, 2.5E5		0, 0	T2: [11,21], [27,41]	15.3437, 7.82855	15.3635, 7.82775	-0.0197487, 0.00080297
Xe, 2.5E5		0, 0	T2: [8,21], [27,41]	15.3437, 7.82855	15.3297, 7.82775	0.0140013, 0.00080297
Xe, 2.5E5		0, 0	T2: [9,21], [27,41]	15.3437, 7.82855	15.341, 7.82775	0.0027513, 0.00080297
Xe, 2.5E5		-10, 0	T0: [118,129], [33,47]	5.34458, 7.96128	5.3172, 7.96275	0.0273821 , -0.00146978
Xe, 2.5E5		-5.0, 0	T1: [63,75], [30,44]	10.3441, 7.89492	10.3235, 7.89525	0.0206917, -0.00033341
Xe, 2.5E5		+2.5, 0	T2: [120,133], [26,39]	17.8435, 7.79537	17.8497, 7.794	-0.0062189, 0.00137116
Xe, 2.5E5		+5.0, 0	T2: [231,243], [24,38]	20.3433, 7.76219	20.336, 7.76025	0.00731084, 0.00193935
Xe, 2.5E5		+5.0, 0	T2: [231,244], [24,38]	20.3433, 7.76219	20.3472, 7.76025	-0.0039392, 0.00193935
Xe, 2.5E5		+10, 0	T3: [177,190], [22,35]	25.3428, 7.69583	25.3647, 7.704	-0.0218796, -0.00817427
Xe, 2.5E5		0, -2.5	T2: [11,24], [138,152]	15.3769, 10.3283	15.3972, 10.3253	-0.0203169, 0.00308276
		rotation	-0.00132731 +/- 0.0595656			
		xshift	-15.2384 +/- 0.585944			Max Dev= (27, 8) um
		yshift	8.03152 +/-1.00349			
7/25/24			Zhenyu Ye			12

Summary and Outlook

- Beam Tests at Fermilab Test Beam Facility on May22-June 4 and June 26- July12, 2024
 - Assembled and commissioned a 7-plane babyMOSS telescope with 120 GeV protons
 - Studied the dependence of sensor performance on incident angle
 - Data analysis is nearly completed to extract efficiency, resolution, cluster size
- SEE Tests at Berkeley Accelerator Space Effects Facility on May 22-23 and July 1, 2024
 - Measured babyMOSS SEL and DAC register SEU cross-sections as a function of LET
 - Searched for SEL-sensitive circuits on babyMOSS with motion-controlled collimators
 - Data analysis is nearly completed to extract cross-sections and locations of sensitive circuits
- Plan for Winter 2024/Spring 2025: irradiate babyMOSS sensors and study the temperature dependence of pre- and irradiated sensor performance in the lab and with beam