

Backward ECAL Engineering Design Update

Carlos Muñoz Camacho IJCLab (Orsay, CNRS/IN2P3)

ePIC Collaboration Meeting Lehigh University July 24-27, 2024

Backward ECAL update

FACULTÉ DES SCIENCES

universite

W

Université de Paris

Crystal configuration

0

DORSAY

- 2x2x20 cm³ PWO crystals
- 0.5-mm-thick(C-fiber) between crystals along 2 cm in the front & back; 0.5 mm of air elsewhere

Specifications:

PWO: 8,28g/cm3 20x20x200 mm Dimension: Mass: 0,662 Kg Nb: ≈ 2850 crystals Total mass: ≈ 1900 Kg External diameter: ≈ 123 cm 0,5 mm (carbon plate) Space max:

Detector volume

07/25/2024

A

Mechanical structure

Cooling

PWO light yield is very sensitive to temperature: 2%/°C

- ➤ Goal: maintain temperature of crystals constant within ±0.1°C
- Temperature gradients across the detector and along the crystals should be minimized (but is less critical)

➤ Main heat sources: backward ECal electronics (50-500 W), pfRICH (?), DIRC (?)

Experience from NPS (1080 PWO crystals) at JLab

FACULTE

DES SCIENCES

Université de Paris

Very slow temperature variations: O(days)

Recent developments: 5x5 prototype

FACULTÉ DES SCIENCES D'ORSAY 4

Matrix 5x5:

Cristal 3-3 → Sensors 1 & 2

Cristal 5-3 → Sensors 6 & 8

Cristal 3-5 → Sensors 4 & 1

_			
$\mathbf{n}\mathbf{z}$	195		
UL		74	7461

Thermal studies

	Standard deviation 1 σ										
Results	101 (C)	102 (C)	103 (C)	104 (C)	105 (C)	106 (C)	107 (C)	108 (C)	T° pcb	T° plate	T° ext
Heat ON - Chiller OFF	0,15	0,11	0,11	0,09	0,09	0,08	0,04	0,04	0,12	0,07	0,09
Heat ON - Chiller ON	0,11	0,08	0,07	0,07	0,06	0,06	0,05	0,05	0,08	0,07	0,26
Heat OFF - Chiller ON	0,05	0,06	0,04	0,04	0,03	0,03	0,02	0,02	0,04	0,03	0,12
Heat ON cycle - Chiller ON	0,57	0,09	0,06	0,07	0,13	0,06	0,08	0,07	8,83	0,65	0,14
Heat OFF - T chiller = 19°C → 0°C	2,05	1,99	1,99	2,06	1,99	2,06	2,04	2,03	1,62	1,90	0,76

Thermal simulations

ANSYS simulations ongoing:

5x5 prototype simulation :

Full detector simulation

Readout

FACULTÉ DES SCIENCES 4 Université de Paris

ORSAY

- > 16 (or 4) SiPM per crystal
- Multi-conductor (ribbon) micro coax \succ cable per crystal
- SMD LED for gain monitoring

6M (10)

CNIS

UNIVERSITE PARIS-SACLAY

Test beams

Université de Paris

CERN (Aug-Sep 2024), in collaboration with the LFHCAL group

Detector: Prototype with 3-4 crystals instrumented (~20 readout channels), with different readout options (parallel/independent readout of all SiPM in a crystal)

Goal: commission HGCROC readout, temperature measurements

DESY (Oct-Nov 2024): dedicated backward ECAL test

Detector: fully instrumented prototype (5x5 crystals), with both fully independent readout (400 channels) or parallel readout (25 channels)

Goal: comparison of different readout options: parallel/independent, ASIC/discrete

Prototype assembled TODAY!

Prototype assembled TODAY!

CNIS

• FACULTÉ UNIVERSITE DES SCIENCES PARIS-SACLAY D'ORSAY Université de Paris

OPSAN

- Mechanical conceptual design relatively advanced
- Main outstanding item: choice of front-end electronics \succ
- Ongoing work: cooling & monitoring system

- Plan is to start final/construction drawings in 2025
- Detector construction could start in ~2026. \succ