

ePIC Slow Controls Prototyping

Agenda

- 1. Slow Controls Approach
- 2. Controller Selection
- 3. Possible Final Implementation
- 4. Prototyping

Slow Controls Approach

Allen Bradley Controller Families

- ControlLogix
 - Highest program memory
 - Typically for large system
 - Supports remote IO
 - Overkill for a single detector
- CompactLogix
 - Moderate program memory
 - Typically used for small systems
 - Supports remote IO
- Micro800 (NOT MicroLogix!!!)
 - Small program memory
 - Typically used for single machines
 - Remote IO not supported
 - Inexpensive
 - Looks good on paper, but untested

EPICS support

No EPICS support, yet. A way to save during prototyping? Maybe...

Allen Bradley Remote IO Families

- Point IO
 - 64 IO modules per node
 - Analog IO
 - Digital IO (sourcing and sinking)
 - Relay modules
 - RS 232/485 communication
 - RTD and thermocouple modules
- Flex5000
 - Higher IO density per module, fewer modules per node
 - Digital IO
 - Analog IO
 - No specialized modules

Allen Bradley Redundancy Solutions

- Device Level Ring Networks (DLRs)
 - Like a token ring
 - Device managed ring network with a minimum of 1 supervisor node
 - Supervisor will optimize traffic through the ring and alarm in the event of an interruption
 - Possible supervisors
 - Allen Bradley Stratix Switch (a bit pricey, but it's a backbone Cisco managed switch)
 - Your PLC (limits you to a copper network)
 - Allen Bradley ETAP (copper to fiber converter)
- Why should we use a DLR if there are only 2 nodes in the ring?
 - The PLC can be kept in the counting house, a much cleaner environment
 - If the supervisor node is the PLC or PLC adjacent, you will be alerted of a communication break
 - Remote IO behavior can be preprogrammed in case of a communications fault

Controller Software

- PLC development
 - Studio 5000
 - Needed for ControlLogix and CompactLogix PLCs
 - Connected Components Workbench
 - Needed for Micro800 PLCs
- GUI development
 - FactoryTalk View
 - Allen Bradley product
 - Works fine, needs a license
 - Ignition
 - Generic GUI developer for PLCs
 - Free trial version
 - Modular license model
 - EPICS
 - FREE
 - Learning curve
 - What will be used at the end of the day
 - Python!
 - Pylogix can interface with ControlLogix, CompactLogix, and Micro800 PLCs (how convenient!)

Possible Final Implementation

- PLC: CompactLogix Controller
- Remote IO: Point IO Ethernet Module (1734-AENT) and supporting IO
- Redundancy measures: Allen Bradley 1734-ETAP or 1734-ETAP2F
- Miscellaneous hardware:
 - Switches, power supplies, sensors & actuators, etc.
- Supporting Software:
 - Studio 5000
 - EPICS

Prototyping with Final Implementation

Pros

• Portable

Cons

- \$\$\$
- Software and firmware licensing issues
- Different coding styles

Prototyping on the cheap with AB

- Controller: Micro800 PLC (recommend a Micro850)
 - Comes with 10 digital inputs and 10 digital outputs built in
 - Expansion modules available for:
 - Analog IO
 - RTD/thermocouples
 - Serial communication
 - Motion controls
- No RIO or redundancy
- Misc. Hardware
- Supporting Software
 - Connected Components Workbench
 - GUI of choice

Resources for controller selection

- Integrated Architecture Builder
 - Free software from Allen Bradley
 - Use wizards to determine a PLC configuration and BOM

Questions, Comments, Concerns

