
The RCDAC Data Acquisition System

Martin L. Purschke

DAQ manager of sPHENIX

Previous DAQ/Electronics WG co-convener for what is now ePIC

I have been a DAQ (and notably, a calorimeter) guy since my early days at CERN

The new ePIC logo now immortalized at the

F&A Grog House,

117 East 3rd St, Bethlehem, PA 18015

What I’ll be talking about today

RCDAQ is DAQ system that has been around since about 2012

It started out as your swiss army knife-type DAQ system to quickly read out whatever you need for

your R&D project

It was used in pretty much all R&D campaigns for sPHENIX, but already much earlier in several EIC-

themed test beams and other measurements, typically at the Fermilab Test Beam Facility

To the best of my knowledge (some I know, some I learn about when I get questions), it is in use in
about 25-30 places around the world

I have step-by-step manuals with examples that seem to work for groups that set up completely
autonomously. Just the other day I got a question from an outside group that I didn’t know about.

They had been using RDAQ for more than a year and finally had a question.

RCDAQ was chosen to be the main DAQ system of sPHENIX, with several higher-level additions

(“Run Control”) that are irrelevant here

I will mostly focus on lab-test / R&D-style / test beam setups today

Go to https://www.phenix.bnl.gov/~purschke/rcdaq for the manuals and sample data files etc

2

https://www.phenix.bnl.gov/~purschke/rcdaq

One of the early EIC test beam campaigns with RCDAQ -

The Minidrift GEM tracking detector (2014)

3

IEEE Transactions on Nuclear Science, vol. 63, no. 3, pp. 1768-1776, June 2016

10 years ago!

Another one from the EIC calo orbit – Oleg, Craig, myself

4

”Can we get more calorimeter position information by adding a dual readout and measure time?”

In the end we found that it’s too small an
effect to pursue, but it was worth checking!

Moving the calorimeter in the beam for “more
left” or “more right” incidence

What does one need?

Pretty much any Linux machine and distro will do. (I do lots of development on a Linux VM on

my M2 Mac here)

I’m striving to be distro-agnostic:

• RedHat and derivatives (RHEL, Fedora, CentOS, Alma… all good)

• Debian and similar (Ubuntu, Mint, …)

• Arch Linux

And yes, it does run on a Raspberry Pi – sometimes you want to take a few weeks worth of

cosmics with some detector module without tying up a more expensive PC

The main platforms currently at work in sPHENIX are 96-core AMD EPYC PCs.

For practicing/going through the manuals, you can run everything without any actual readout

hardware – RCDAQ provides “pretend-devices” that behave like an ADC

5

RCDAQ - The High Points

Each interaction with RCDAQ is a shell command. There is no “starting an application and

issuing internal commands” (think of your interaction with, say, root)

RCDAQ out of the box doesn’t know about any particular hardware. All knowledge how to

read out something, say, a FELIX card, comes by way of a plugin that teaches RCDAQ

how to do that.

That makes RCDAQ highly portable and also distributable – some sPHENIX FEMs use

commercial drivers for the readout; I cannot re-distribute CAEN software, etc etc

RCDAQ has no proprietary configuration files. (huh? In a minute).

Support for different event types

Built-in support for standard online monitoring

Built-in support for electronic logbooks (Stefan Ritt’s Elog)

Network-transparent control interfaces
6

Everything is a shell command…

One of the most important features. Any command is no different from “ls –l“ or “cat”

Everything is inherently scriptable

You have the full use of the shell’s capabilities for if-then constructs, error handling, loops,

automation, cron scheduling, and a myriad of other ways to interact with the system

In that sense, there are no proprietary configuration files – only configuration scripts.

This is quite different from “my DAQ supports scripts”!

I do not want to be trapped within the limited command set of any application!

With shell commands, the DAQ is fully integrated into your existing work environment

(And yes there are GUIs – they usually just trigger the appropriate command)

7

On Autopilot - Scripts at work

Very often – especially in your R&D days – you want to step through a range of values of a

configuration parameter and see what your detector prototype has to say

• Bias voltage scans (we characterized gazillions of SiPMs)

• Position scans

• Temperature scans

• And on and on

Such a measurement is best done in a script that reads predetermined positions / voltage

settings / what have you and performs the measurement

I picked an example: What is the response uniformity of a calorimeter module when a shower

develops in different places? (We were very worried about this)

We were simulating different shower positions by “writing light with a light fiber” on the module

front face

8

Measurements on autopilot through scripting

9

Calorimeter

Module

PMT

(later SiPM)

X-Y step motor

Light Fiber

Simulate shower incidence positions by moving a light fiber in x and y

take a run for each position w/ 4000 events

50 x 25 = 1250 positions (later we had 60x60, you really want to automate that)

Let it run overnight, come back in the morning, look at the data

The Script

10

25 positions in y

 move the Y motor

 50 positions in x

 move the x motor

 next x

next y

#! /bin/sh

STARTPOSX=0

STARTPOSY=9900

INCREMENTX=200

INCREMENTY=-200

CURRENTPOSY=$STARTPOSY

for posy in $(seq 25) ; do

 quickmove.sh $CURRENTPOSY 2

 sleep 5

 CURRENTPOSY=$(expr $CURRENTPOSY + $INCREMENTY)

 CURRENTPOSX=$STARTPOSX

 for posx in $(seq 50) ; do

 echo "moving to $CURRENTPOSX"

 quickmove.sh $CURRENTPOSX 1

 sleep 5

 CURRENTPOSX=$(expr $CURRENTPOSX + $INCREMENTX)

 done

done

The DAQ operation becomes an

integral part of your shell environment

Automatic end after 4000 events

 start the DAQ

rcdaq_client daq_set_maxevents 4000

 rcdaq_client daq_begin

 wait_for_run_end.sh

The RCDAQ client-server concept

RCDAQ server

PCIe Network USB

HardwareHardware
Hardware

RCDAQ Client

Command line

RCDAQ Client

Command line

RCDAQ Client

scripts

RPC

Protocol

This allows an arbitrary number of

processes to interact with RCDAQ

concurrently

11

These are the 3 fundamental ways for data to get into a PC –
• PCIExpress

• Network

• USB

Some workhorse devices implemented in RCDAQ

There are many more not shown (all told, there are plugins for about 60)

Many devices that you can often find in your institute already, or in the CAEN catalog

12

RCDAQ

FELIX Card

DRS4 Eval board

“USB Oscilloscope”

The CERN RD51

SRS System

PCIe

The CAEN V1742

waveform digitizer

PCIe

Example: reading out a DRS4 Eval board

$ rcdaq_client load librcdaqplugin_drs.so

$ rcdaq_client create_device device_drs -- 1 1001 0x21 -150 negative 140 3

$ daq_open

$ daq_begin

 # wait a while…

$ daq_end

You see, each interaction is a separate shell command.

13

Meta Data Capturing

In the “real” experiment that’s running for a few years (think sPHENIX, ATLAS, what have you)

you are embedded in an environment that supports all sorts of record keeping

At a test beam or you in your lab needs a different kind of “record keeping support”

What was the temperature? Was the light on? What was the HV? What was the position of that

X-Y positioning table?

We capture this information in the raw data file itself and the data cannot get lost

I often add a webcam picture to the data so we have a visual confirmation that the detector is in

the right place, or something

A picture captures everything…

Let me show you how we always capture the RCDAQ setup itself

14

Reading different things with different Event Types

You would think of the DAQ as “reading out your detector”

Very often, it is necessary to read out different things at different times.

Let’s go to the CERN-SPS (or the Fermilab Test Beam facility) for an example

One needs to read out “meta-info” about each spill for spill-by-spill corrections

15

Data Events

Read your detector

channels, ADCs,

TDCs...

Spill-On event

Read and clear scalers

Flush buffers

Spill-Off event

Read and clear scalers

(allows spill intensity-

based corrections)

extraction

acceleration

SPS or AGS

“spill”

15

Begin-run

event

End-run

event

Two more events that are always there – the begin-run and end-run events

Remember this?

This was our typed-in example from before

$ rcdaq_client load librcdaqplugin_drs.so

$ rcdaq_client create_device device_drs -- 1 1001 0x21 -150 negative 140 3

16

#! /bin/sh

rcdaq_client load librcdaqplugin_drs.so

rcdaq_client create_device device_drs -- 1 1001 0x21 -150 negative 140 3

Now you put this into a script so you always get the same setup:

Capturing the setup script itself for posterity

We add this very setup script file into our begin-run event for posterity

#! /bin/sh

rcdaq_client create_device device_file 9 900 ”$0”

rcdaq_client load librcdaqplugin_drs.so

rcdaq_client create_device device_drs -- 1 1001 0x21 -150 negative 140 3

So this gets added as packet with id 900 in the begin-run

It’s not quite right yet - $0 is usually just “setup.sh”, so the server may not be able to find it.

Let me show the “end product”:

This “device” captures a

file as text into a packet

This “9” is the event

type of the beg-run

And this refers to the

name of the file itself

17

A typical RCDAQ Setup Script

#! /bin/sh

this sets up the DRS4 readout with 5GS/s, a negative

slope trigger in channel 1 with a delay of 140

if ! rcdaq_client daq_status > /dev/null 2>&1 ; then

 echo "No rcdaq_server running, starting..."

 rcdaq_server > $HOME/rcdaq.log 2>&1 &

 sleep 2

fi

MYSELF=$(readlink -f $0)

rcdaq_client daq_clear_readlist

rcdaq_client create_device device_file 9 900 "$MYSELF”

rcdaq_client load librcdaqplugin_drs.so

rcdaq_client create_device device_drs -- 1 1001 0x21 -150 negative 140 3
18

If no server is running,

we start one here.

We convert the script filename into a full path

We clear all existing

definitions

We load the plugin(s) and define the device(s)

We comment a lot as a

way of documentation

Here is the actual setup script for our FELIX readout

#!/bin/bash

RunType=beam

H=$RCDAQHOST

[-z "$H"] && H=$(hostname)

MYSELF=$(readlink -f $0)

rcdaq_client daq_clear_readlist

rcdaq_client create_device device_file 9 900 "$MYSELF"

rcdaq_client load librcdaqplugin_dam.so

rcdaq_client create_device device_dam 1 4${H:4:2}1 1 128

rcdaq_client daq_set_runcontrolmode 1

19

Abridged version, just the essentials

More about capturing your environment

Sometimes you add meta-info to make the analysis easier, especially in the aforementioned

“scanning something” setups - example later

Many times you capture things only “just in case”

I usually add a camera picture to the begin-run, especially when the detector moves in the

beam for some position scan

You don’t routinely look at them in your analysis, but it’s good to have that info

If you have some inexplicable feature, you can use the meta-data to do “forensics”

Find out what, if anything, went wrong

The more data you capture, the better this gets

Think of it as “black box” on a plane…

20

Forensics (FermiLab test beam for the future ePIC HCal)

21

“It appears that the distributions change for Cherenkov1 at 1,8,12,and 16 GeV

compared to the other energies. It seems that the Cherenkov pressures are

changed. […] Any help on understanding this would be appreciated.”

Martin: “Look at the info in the data files:”

Among many other things, we capture the most relevant beamline parameters

$ ddump -t 9 -p 923 beam_00002298-0000.prdf

S:MTNRG = -1 GeV

F:MT6SC1 = 5790 Cnts

F:MT6SC2 = 3533 Cnts

F:MT6SC3 = 1780 Cnts

F:MT6SC4 = 0 Cnts

F:MT6SC5 = 73316 Cnts

E:2CH = 1058 mm

E:2CV = 133.1 mm

E:2CMT6T = 73.84 F

E:2CMT6H = 32.86 %Hum

F:MT5CP2 = .4589 Psia

F:MT6CP2 = .6794 Psia

$ ddump -t 9 -p 923 beam_00002268-0000.prdf

S:MTNRG = -2 GeV

F:MT6SC1 = 11846 Cnts

F:MT6SC2 = 7069 Cnts

F:MT6SC3 = 3883 Cnts

F:MT6SC4 = 0 Cnts

F:MT6SC5 = 283048 Cnts

E:2CH = 1058 mm

E:2CV = 133 mm

E:2CMT6T = 74.13 F

E:2CMT6H = 37.26 %Hum

F:MT5CP2 = 12.95 Psia

F:MT6CP2 = 14.03 Psia

More Forensics (HCal at the Fermilab test beam again…)

22

“There is a strange effect starting in run 2743. There is a higher fraction

of showering than before. I cannot see anything changed in the elog.”

Look at the cam pictures we automatically captured for each run:

$ ddump -t 9 -p 940 beam_00002742-0000.prdf > 2742.jpg

$ ddump -t 9 -p 940 beam_00002743-0000.prdf > 2743.jpg

“Meta Data” Packet list from that test beam

23

More than 72 environment-capturing

packets (accelerator params, voltages,

currents, temperatures, pictures, …)

Captured at

begin-run

Captured again

at spill-off

Moving Detector Example: “HCal Tile Mapping” at the Fermi

Test Beam Facility

“Tile mapping” refers to mapping the position-dependent response of a hadronic

calorimeter tile.

About 200 individual positions of the tile relative to the beam – you’d go nuts doing all that

manually, and you are bound to make mistakes

So all is done on autopilot as explained before

And all on camera for feel-good value – does that thing move right when we think it

should?

This setup exercises many of the

aforementioned features: scripting and

reacting to the FTBF spill, network

transparency (we cannot access the table

positioning from our DAQ machine, but a

FTBF-owned machine can control our

DAQ)

One last point: Using RCDAC features to streamline your

analysis

25

Going back to the “calo module mapping” for a moment

You are ending up with several thousand individual data files, one

per position

In each begin-run event we capture additional information,

especially the x/y position this data point is from

we add a command to capture the positions to a file

rcdaq_client create_device device_command 9 0 "$HOME/getmotorpositions.sh"

rcdaq_client create_device device_file 9 920 "$HOME/positions.txt"

rcdaq_client create_device device_filenumbers_delete 9 921 "$HOME/positions.txt"

RCDAQ has a “command device” that doesn’t read out anything but executes a command when the

event is triggered – here we execute “getmotorpositions.sh” at each begin-run

This script reaches out to the positioning system and writes a file “positions.txt” with the two numbers

We then absorb the file into the begin-run event

And we can retrieve this in the analysis (here shown with a command-line utility):

$ ddump -t 9 -p 920 scan10_0000201800-0000.evt

4600

-4400

Using RCDAC features to streamline your analysis

26

Then we make a list of all files that belong to this scan, and throw them all at the at the analysis process

We get the begin-run event and extract and remember the x-y positions

We then histogram the signal with the actual data events

Eventually we hit end end-run event, know that this position is done. Get the mean from the histogram, and

fill it in the map at the right position

Run through all files in the set, have a coffee, and see the results:

In this way you can run the analysis without burdensome additional bookkeeping

All you need to analyze the data in one fell swoop is contained in the data themselves

What’s in it for ePIC

I take pride in having one of the easiest-to-use and most versatile DAQ systems out there

(from scratch on a brand-new PC to seeing a histogram: one hour)

RCDAQ can read out our detector-specific devices (think FELIX), and many commercial

devices that are often used in lab tests (like CAEN V1742, SRS, DRS4, …)

The latest addition is Nalu’s ASocV3 (in progress)

We have been (and are, all BNL/Yale/SBU, test beams) using RCDAQ for our R&D, ample

operational experience among ePIC members

Superb support for automated measurements that we will need for many tests

Support for analysis and online monitoring (not enough time today, maybe another time)

(I brought a DRS4 with me if you want a demo in a coffee break)

BTW: We maintain a permanent “bridgehead” at the Fermi FTBF and can spin up a readout

system in an hour after you are through the front gate

27

There is one thing I haven’t told you yet…

28

What does “RCDAQ” stand for?

The “Really Cool Data Acquisition”

Thank you!

This page is intentionally left blank

29

Automated Elog Entries

RCDAQ can make automated entries in your Elog

Of course you can make your own entries, document stuff, edit entries

Gives a nice timeline

and log

30

GUIs

• GUIs must not be stateful!

• Statelessness allows to have multiple GUIs at the same

time

• And allows to mix GUIs with commands (think scripts)

• (all state information is kept in the rcdaq server)

• My GUI approach is to have perl-TK issue standard

commands, parse the output

• Slowly transitioning to Web-based controls (web

sockets + Javascript)

31

On my phone

Perl-TK

Web Browser

Ok, that was a lot about test beams… what about sPHENIX

I harped on lab tests / test beams etc a bit because that’s what ePIC will be busy with for

some time

What do we do in sPHENIX?

In short, each detector element connects to a PC that runs its own instance of RCDAQ

It’s all “glued” together with the timing system

And our (in 2023) 52 RCDAQ instances are controlled by a meta-process “RunControl”

The RCDAQs run in a “run control mode” that reduces some of their autonomy so that Run

Control is, well, in control

32

sPHENIX DAQ Bird’s eye view

33

• DCM-2 receives data from digitizer, zero-suppresses and packages

• SEB collects data from a DCM group (~20)

• EBDC Event Buffer and Data Compressor (~40)

• Buffer Box data interim storage before sending to the computing center (6)

Data Concentration

Rack Room

On Detector Rack Room Rack Room

DCM
DCM

DCM
DCM2

SEB

SEB

Buffer Box

Buffer Box

Buffer Box

Buffer Box

Buffer Box

DCM
DCM

DCM
DCM2

DCM
DCM

DCM
DCM2

DCM
DCM

DCM
FEM

DCM
DCM

DCM
FEM

DCM
DCM

DCM
FEM SEB

EBDCFELIX

EBDCFELIX

EBDCFELIX

Buffer Box

DCM
DCM

DCM
FEE

DCM
DCM

DCM
FEE

DCM
DCM

DCM
FEE

To

HPSS

(Computing

Center)

100+ Gigabit

Crossbar

Switch

many, many RCDAQs in sPHENIX

34

EBDCFELIX

EBDCFELIX

EBDCFELIX

DCMDCMDCMFEE

DCMDCMDCMFEE

DCMDCMDCMFEE

EBDCFELIX

EBDCFELIX

EBDCFELIX

DCMDCMDCMFEE

DCMDCMDCMFEE

DCMDCMDCMFEE

EBDCFELIX

EBDCFELIX

EBDCFELIX

DCMDCMDCMFEE

DCMDCMDCMFEE

DCMDCMDCMFEE

EBDCFELIX

EBDCFELIX

EBDCFELIX

DCMDCMDCMFEE

DCMDCMDCMFEE

DCMDCMDCMFEE

EBDCFELIX

EBDCFELIX

EBDCFELIX

DCMDCMDCMFEE

DCMDCMDCMFEE

DCMDCMDCMFEE

EBDCFELIX

EBDCFELIX

EBDCFELIX

DCMDCMDCMFEE

DCMDCMDCMFEE

DCMDCMDCMFEE

EBDCFELIX

EBDCFELIX

EBDCFELIX

DCMDCMDCMFEE

DCMDCMDCMFEE

DCMDCMDCMFEE

EBDCFELIX

EBDCFELIX

EBDCFELIX

DCMDCMDCMFEE

DCMDCMDCMFEE

DCMDCMDCMFEE

EBDCFELIX

EBDCFELIX

EBDCFELIX

DCMDCMDCMFEE

DCMDCMDCMFEE

DCMDCMDCMFEE

EBDCFELIX

EBDCFELIX

EBDCFELIX

DCMDCMDCMFEE

DCMDCMDCMFEE

DCMDCMDCMFEE

EBDCFELIX

EBDCFELIX

EBDCFELIX

DCMDCMDCMFEE

DCMDCMDCMFEE

DCMDCMDCMFEE

EBDCFELIX

EBDCFELIX

EBDCFELIX

DCMDCMDCMFEE

DCMDCMDCMFEE

DCMDCMDCMFEE

EBDCFELIX

EBDCFELIX

EBDCFELIX

DCMDCMDCMFEE

DCMDCMDCMFEE

DCMDCMDCMFEE

EBDCFELIX

EBDCFELIX

EBDCFELIX

DCMDCMDCMFEE

DCMDCMDCMFEE

DCMDCMDCMFEE

EBDCFELIX

EBDCFELIX

EBDCFELIX

DCMDCMDCMFEE

DCMDCMDCMFEE

DCMDCMDCMFEE

EBDCFELIX

EBDCFELIX

EBDCFELIX

DCMDCMDCMFEE

DCMDCMDCMFEE

DCMDCMDCMFEE

DCMDCMDCMDCM2
SEB

SEB

DCMDCMDCMDCM2

DCMDCMDCMDCM2

DCMDCMDCMFEM

DCMDCMDCMFEM

DCMDCMDCMFEM SEB

DCMDCMDCMDCM2
SEB

SEB

DCMDCMDCMDCM2

DCMDCMDCMDCM2

DCMDCMDCMFEM

DCMDCMDCMFEM

DCMDCMDCMFEM SEB

DCMDCMDCMDCM2
SEB

SEB

DCMDCMDCMDCM2

DCMDCMDCMDCM2

DCMDCMDCMFEM

DCMDCMDCMFEM

DCMDCMDCMFEM SEB

DCMDCMDCMDCM2
SEB

SEB

DCMDCMDCMDCM2

DCMDCMDCMDCM2

DCMDCMDCMFEM

DCMDCMDCMFEM

DCMDCMDCMFEM SEB

DCMDCMDCMDCM2
SEB

SEB

DCMDCMDCMDCM2

DCMDCMDCMDCM2

DCMDCMDCMFEM

DCMDCMDCMFEM

DCMDCMDCMFEM SEB

DCMDCMDCMDCM2
SEB

SEB

DCMDCMDCMDCM2

DCMDCMDCMDCM2

DCMDCMDCMFEM

DCMDCMDCMFEM

DCMDCMDCMFEM SEB

DCMDCMDCMDCM2
SEB

SEB

DCMDCMDCMDCM2

DCMDCMDCMDCM2

DCMDCMDCMFEM

DCMDCMDCMFEM

DCMDCMDCMFEM SEB

Trigger/Timing

system

Held together by

• Run Control (slow controls - start, stop, etc)

• RHIC crossing-by-crossing by the Timing System

Coming back to the “shell command” feature

For the last 3 minutes, I want to harp some more on the superiority of that “everything is a

shell command” approach

Often I’m learning of a new ingenious way to use this aspect for something cool

A real good tool gets used in ways that the designer did not envision… but it works!

A group needed to test a few thousand pads on a plane if they a) work and b) are connected

right.

Inject charge into the pads one by one... but you can't take your eyes (or the probe) off the

pad plane or you lose your position

They came up with…

35

Data Formats in general…

One of the trickiest parts when developing a new application is defining a data format

It can take up easily half of the overall effort – think of Microsoft dreaming up the format to store this

very PowerPoint presentation you are seeing in a file. We used to have ppt, now we have pptx –
mostly due to limitations in the original format design

A good data format takes design skills, experience, but also the test of time

The tested format usually comes with an already existing toolset to deal with data in the format, and
examples – nothing is better than a working example

Case in point: We could easily accommodate the sPHENIX Streaming Readout data in this format,
event though no one had ever heard the term when I designed this

I have no time today to talk about the analysis end / online monitoring, etc of this, maybe another
time

36

Modularity and Extensibility

No one can foresee and predict requirements of a data format 20 years into the future.

Must be able to grow, and be extensible

The way I like to look at this:

FedEx (and UPS) cannot possibly know how to

ship every possible item under the sun

But they know how to ship a limited set of

box formats and types, and assorted weight

parameters and limits

Whatever fits into those boxes can be shipped

During transport, they only look at the label on the box, not at what’s inside

We will see a surprisingly large number of similarities with that approach in a minute

“packets”

37

Example: CAEN’s V1742 format

We just take that

blob of memory,

“put it in a box”,

done.

The analysis

software takes

care of the

unpacking and

interpretation later

Just grab it. Don’t

waste time here.

38

Shell integration

THE SPEAKING DAQ

39

One more cool thing

Anything that’s capable of issuing a shell command can control the DAQ

I have said (but not shown you yet) that the DAQ can be controlled remotely, through the

network

I have a Raspberry Pi connected here that I have set up so it controls RCDAQ running on my

Laptop

And you see it has developed some kind of growth on

its head… That’s an infrared receiver

We know we can assign arbitrary commands to buttons

pressed on virtually any IR remote

I guess you see where this is going…

40

41

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

