
Timeframe-levelreconstruction in JANA2
Nathan Brei
Jefferson Lab
25 July 2024



Overview
Recap of work since February
• Quick primer on JANA2 parallelism internals• Event levels• New components: Unfolders and Folders• Consequences for existing components: (Omni)Factories and EventSources• Dynamic wiring of processing topology• Memory ownership options
Current status
Ongoing work
• Generalized event and run numbers• Slow controls: interleaving vs side-loading• Event classification and filtering



Source Map Tap

How JANA2 works internally – Formalism
Sequential arrow:Read input file orstream

Parallel arrow:Compute anintermediate result Sequential arrow:Write output file

• Dataflow-parallel processing topology consisting of arrows, queues, and pools• Arrows represent fixed tasks which may be sequential or parallel• Arrows may have multiple queues and pools for their inputs and outputs• Queues allow asynchronous processing so that no thread is directly waiting for a computation to finish



Source Map Tap

How JANA2 works internally – Formalism

Pool ofevents Queue ofevents Queue ofevents Pool ofevents

• Dataflow-parallel processing topology consisting of arrows, queues, and pools• Arrows represent fixed tasks which may be sequential or parallel• Arrows may have multiple queues and pools for their inputs and outputs• Queues allow asynchronous processing so that no thread is directly waiting for a computation to finish



Map Tap

How JANA2 works internally – Cartoon



Source Map Tap

How JANA2 Components map to Arrows

JEventSource::GetEvent()

JEventProcessor::ProcessParallel()
…which callsJFactory::Process()
… which callsJFactory::Process()

…etc

JEventProcessor::Process()

• The user doesn’t interact with topologies or arrows directly• Instead, the user provides JANA with components such as JEventSources, JEventProcessors, JFactories• Components are decoupled from each other. “Only communicate through the data model”• JANA2 assigns the components’ callbacks to arrows in the processing topology

But also:JEventSource::ProcessParallel()



Event levels
• JANA2 has a JEvent abstraction which previously meant both1. A container of intermediate data that is used as JANA’s unit of parallelism2. A physics event• Now, JEvent strictly means (1).
• Each JEvent is tagged (not typed!) as belonging to some JEventLevel.• For now, JEventLevel is an enum, although user-definable event levels may besupported in the future.• JANA2 doesn’t assume that all event levels are hierarchical, e.g. that one physicsevent fits inside exactly one block, or even fully ordered. Instead, users establishthat relationship explicitly.

enum class JEventLevel {Run,Subrun,Timeslice,Block,SlowControls,PhysicsEvent,Subevent,Task,None};

“PhysicsEvents” and “Timeframes” are simply differentpartitionings of the time domain. As such, the JANA2framework should handle these cases symmetrically to themaximum extent possible.



Generalizing to two event levels
Phy

sics
Eve

nt
leve

l
Tim

esli
ce

leve
l Source Map

Unfold
Map Tap

Pool of PhysicsEvents

Pool of Timeslices Reads a file containingTimeslices
Calculates intermediateresults for the Timeslices

Calculates intermediateresults for thePhysicsEvents



Generalizing to two event levels
Phy

sics
Eve

nt
leve

l
Tim

esli
ce

leve
l Source Map

Unfold
Map Tap

Splits Timeslices into PhysicsEvents.Keeps the Timeslice around and letsthe PhysicsEvent reference it.
This uses a new type of component!

Writes PhysicsEvents(and possiblyTimeslices) to file

PhysicsEvent pool knows how torecycle Timeslices once theirreference count reaches zero



Introducing JEventUnfolder component
Result Unfold(const JEvent& parent,JEvent& child,int child_index) override;

enum class Result {NextChildNextParent,NextChildKeepParent,KeepChildNextParent};

• JEventUnfolder looks and feels very similar to a JOmniFactory• Users may declare Parameters, Services, Resources, Inputs, Outputs, oraccess everything through JApplication/JEvent• No Generator needed as there will only be one instance active for anygiven level, same as JEventProcessors
• Provides an Unfold callback• Name comes from functional programming and stream processing• Unfold handles both “splitting” and “merging” streams• Returns a Result code indicating whether the parent and childbelong together• We never need to have all PhysicsEvents corresponding to oneTimeslice in memory at once
• Inputs come from the parent event (e.g. Timeslice)• Outputs are inserted into the child event (e.g. PhysicsEvent)• The child event keeps a pointer to the parent event around, so that anyfactory can access Timeslice-level data



What does this mean for our Factories?
• OmniFactories look almost exactly the same as before
• OmniFactories each belong to a particular event level. All of their outputs belong to that level.
• OmniFactory::Input helper now takes event level as an optional parameter
• Event level information can be applied entirely at the JOmniFactoryGenerator level
• The same algorithm and factory can be wired and reconfigured for different event levels

struct MyProtoclusterFactory: public JOmniFactory<MyProtoclusterFactory> {
PodioInput<ExampleHit> hits_in {this};PodioOutput<ExampleCluster> clusters_out {this};
void Configure() {}
void ChangeRun(int32_t run_nr) {}
void Execute(int32_t run_nr, uint64_t evt_nr) {...}

// Factory that produces timeslice-level protoclusters// from timeslice-level hitsapp->Add(new JOmniFactoryGeneratorT<MyProtoclusterFactory>({ .tag = "timeslice_protoclusterizer",.level = JEventLevel::Timeslice,.input_names = {"hits"},.output_names = {"ts_protoclusters"}}));
// Factory that produces event-level protoclusters// from event-level hitsapp->Add(new JOmniFactoryGeneratorT<MyProtoclusterFactory>({ .tag = "event_protoclusterizer",.input_names = {"hits"},.output_names = {"evt_protoclusters"}}));



What does this mean for JEventSources?
* Sources are#include <JANA/JEventSourceGenerator.h>#include "MyFileReader.h"

class MyFileReaderGenerator : public JEventSourceGenerator {
double CheckOpenable(std::string resource_name) override {if (resource_name.find(".root") != std::string::npos) {return 0.01;}return 0;}
JEventSource* MakeJEventSource(std::string resource_name) override {

auto source = new MyFileReader;
if (resource_name.find("timeslices") != std::string::npos) {source->SetLevel(JEventLevel::Timeslice);}else {source->SetLevel(JEventLevel::PhysicsEvent);}return source;}};

• JANA2 can figure out that the inputfile contains timeslices from insidethe JEventSourceGenerator
• This means that this criticalinformation is already knownbefore the time of topologyconstruction
• The topology builder is able todecide what topology to buildbased off what components wereprovided.
• The same PODIO event sourceclass can be reused for filescontaining timeslices vs physicsevents with minimal modification



Generalizing further
Source Map

Unfold Fold
Map Tap

Source Map
Unfold Fold

Map Tap

Source Map
Unfold Fold

Map Tap

• Source calls• JEventSource::GetEvent()• Map calls• JOmniFactory::Process()• JEventProcessor::ProcessParallel()• JEventSource:: ProcessParallel()• JEventUnfolder:: ProcessParallel()• JEventFolder:: ProcessParallel()• Tap calls• JEventProcessor::Process()• Unfold calls• JEventUnfolder::Unfold()• Fold calls• JEventFolder::Fold()

Phy
sEv

ent
leve

l
Tim

esli
ce

leve
l

Sub
eve

nt
leve

l

• The arrows in the further generalized topology (abstractly) form a grid:
{Source, Map1, Unfold, Fold, Map2, Tap} x {Timeslice, PhysicsEvent, Subevent,…}• Depending on which components the user provides, JANA2 can activate and wire the arrows automatically• This wiring could also be specified manually



Basic topology
Source Map

Unfold Fold
Map Tap

Source Map
Unfold Fold

Map Tap

Source Map
Unfold Fold

Map Tap

User provides:• JEventSource [Timeslice]• JEventProcessor [Timeslice]• JFactory [Timeslice]

TimesliceEventSubevent

Phy
sEv

ent
leve

l
Tim

esli
ce

leve
l

Sub
eve

nt
leve

l

Parallel Sequential



Phy
sics

Eve
nt

leve
l

Tim
esli

ce
leve

l
Sub

eve
nt

leve
l

Timeslice splitting topology
Source Map

Unfold Fold
Map Tap

Source Map
Unfold Fold

Map Tap

Source Map
Unfold Fold

Map Tap

User provides:• JEventSource [T]• JFactory [T]• JEventUnfolder [T -> P]• JEventProcessor [P]• JFactory [P]

TimesliceEventSubevent
Parallel SequentialOnly one wiring usually makes sensefor each combination of componentsthe user may add!



Phy
sics

Eve
nt

leve
l

Tim
esli

ce
leve

l
Sub

eve
nt

leve
l

Timeslices + subevents topology
Source Map

Unfold Fold
Map Tap

Source Map
Unfold Fold

Map Tap

Source Map
Unfold Fold

Map Tap

User provides:
• JEventSource [T]• JEventProcessor [P]
• JEventUnfolder [T -> P]• JEventUnfolder [P -> S]• JEventFolder[S -> P]
• JFactory [T]• JFactory [P]• JFactory [S]

TimesliceEventSubevent
Parallel Sequential



Phy
sics

Eve
nt

leve
l

Tim
esli

ce
leve

l
Sub

eve
nt

leve
l

What happen if the user provides “extra”components?
Source Map

Unfold Fold
Map Tap

Source Map
Unfold Fold

Map Tap

Source Map
Unfold Fold

Map Tap

User provides:
• JEventSource [P]• JEventProcessor [P]• JEventUnfolder [T -> P]IGNORED!• JFactory [T]IGNORED!• JFactory [P]

TimesliceEventSubevent
Parallel Sequential



What does this mean for EICrecon?
• We can define our factories and algorithms once
• We can add generators that wire them differently for the timeslice inputfiles and for physics input files
• These wirings can live side-by-side without interfering with each other
• We can define our PODIO event source and processor once
• We can add a generator that configures the source’s event level
• The topology builder choose which topology to build based off of whichcomponents (most notably, sources) are present
• No additional configuration necessary! Eases the transition fromevents to timeslices



Memory management – Concept
As of right now:
• Parents have shared-ptr-like semantics (except they are recycled to a pool)
• Parents always outlive their children
• Events can have multiple parents
• Parents are uniquely identified by their event level: “Diamond inheritance” not permitted
• To get data from a parent, you have to ask for the parent explicitly (no searching or“importing into the global namespace”)
Future improvements:
• Event sources will eventually be able to emit events that already have parents
• Data in adjacent timeslices will be accessible via a Csibling’ reference, analogous to parentsexcept weak-ptr-like



Memory management – Parent relation

Timeslice #47 (47)

Run #3

Timeslice #46 (46) Timeslice #48 (48)

Event #556 (1)Event #555 (0) Event #557 (0)Event #554 (6)

Eve
ntl

eve
l

Time PhysicsEvent 555 canreference Timeslice 47 andRun 3
Timeslice 47 will stay inmemory until PhysicsEvent555 and 556 are recycled



Memory management – Multiple parents

Timeslice #47 (47)

Run #3

Timeslice #46 (46) Timeslice #48 (48)

Event #556 (1)Event #555 (0) Event #557 (0)Event #554 (6)

Eve
ntl

eve
l

Time

Slow Controls #22 Slow Controls #21

Events need to fit within both Timeslices andSlowControls, but SlowControls and Timeslicescan overlap!
Not all parent relations willnecessarily come from theUnfolder!



Memory management – Sibling relations(Coming soon!)

Timeslice #47 (47)

Run #3

Timeslice #46 (46) Timeslice #48 (48)

Event #556 (1)Event #555 (0) Event #557 (0)Event #554 (6)

Eve
ntl

eve
l

Time PhysicsEvent 555 canreference Timeslice 47 and46 and 48
Timeslice 47 has to stayaround until both 46 and48 are ready to be recycled

This is no longer merereference counting!



Current status
• An end-to-end working example of timeframe splitting is already present inJANA2’s master branch

• src/examples/TimesliceExample• https://github.com/JeffersonLab/JANA2/

• EICrecon has a skeleton for timeframe splitting as a WIP PR
• https://github.com/eic/EICrecon/pull/1510• Proof-of-concept for TDR: Kolja, Shuji, Barak• Generated data files containing “wide events” with background• Goal: test tracking accuracy without requiring realistic timeframe splitting logic• Developing realistic timeframe splitting logic is non-trivial

https://github.com/JeffersonLab/JANA2/tree/nbrei_omni
https://github.com/eic/EICrecon/pull/1510


Generalized event and run numbers
• Introduce Event Key abstraction which generalizes the concept of event and run number tostreaming scenarios
• Will eventually replace the awkward arguments to JOmniFactory::Execute
• Event number: For each level inside our unfold/fold hierarchy, we can have:

• Absolute number: Starts at 0, increments by 1• Relative number: Starts at 0 for each parent, increments by 1• User key: Could be anything, bunch crossing number in practice
• Run number: Separate numbers for each parent level outside of the unfold/fold hierarchy

• Key used for loading calibrations/conditions• Principle: Take advantage of the symmetry between “side-loading data from a database” and “retrieving datafrom events that live at a different level but were intermingled in the event stream”, e.g. BOR, slow controls• Might all end up being intervals of bunch crossing numbers in practice



ePIC’s event and runnumber
Notably productive discussion here, thanks toJin Huang:
https://indico.bnl.gov/event/22949/

• Do NOT not to align time frame length withrespect to the EIC beam rotation• Primary event key is 64bit beam crossingcounter• Run structure driven by configuration changes;also continuous readout information onbeam/detector monitoring

https://indico.bnl.gov/event/22949/
https://indico.bnl.gov/event/22949/


Event Key status
• A prototype is present in the JANA2 master branch

• https://github.com/JeffersonLab/JANA2/blob/master/src/libraries/JANA/Utils/JEventKey.h
• However, not all component interfaces support it yet, and no components use it inpractice
• You are welcome to poke at it and provide feedback, but I want to think it througha bit more before people start using it
• “Key” consideration is handling an interleaved event stream, e.g. slow controls
• Additional work needed to create an event source that emits events at more thanone level.

https://github.com/JeffersonLab/JANA2/blob/master/src/libraries/JANA/Utils/JEventKey.h


Event classification/filtering
• Users should be able to classify an event. Components can then filter whichevents get processed based off of that classification
• Examples: DIS, DVCS, background, (slow controls, BOR)
• This functionality has always existed in JANA, but with flaws
• Idea: A new component, JEventClassification or JEventFilter, produces aclassification analogously to how JFactories produce collections
• Idea: Factories, unfolders, folders, and JEventProcessors can declare that theyshort-circuit depending on one or more of these classifications



Challenges
• Classification needs to be represented and persisted in the data model

• Data file closure/checkpointing: JANA2 should be able to read any data file it has written, and resumecomputation. This means that need to be either recomputable or cleanly extractable from the data model
• This drives the decision to make JEventFilter be its own component type

• Event classifications are not inherently mutually exclusive.
• Rationale: There may be multiple interactions in a single bunch crossing.
• Rationale: Different classifications may be computed at different points in the compute graph. This plays nicelywith both JANA2 and Podio’s memory/mutability semantics
• Intuition: “Event contains at least one DVCS interaction”, not “event is a DVCS interaction”. This also makes muchmore sense working with timeframes or other higher event levels, which contain many many interactions.
• Problem: Skip(“Background”) behaves counterintuitively if both “Background” and “DIS” are set to true. Only wayaround this is to define BackgroundOnly = !DIS and !DVCS and !SC



Design decisions
• How complex does the short-circuiting logic need to be? Which constructs are most useful?

• FilterAny(“DIS”, “DVCS”);• Skip(“BackgroundOnly”); SkipAny(“BackgroundOnly”, “SlowControls”);• Filter(Not(“BackgroundOnly”))• Lower bound is filtering for a single classification (no NOT, no Skip())• Upper bound on complexity is presumably Conjunctive Normal Form (AND of ORs)
• Are string types enough?

• Other options are bitfields, wrapped bools (“strong types”), enums• Key consideration is open-world assumption due to plugin architecture
• Do we need consecutive “event numbers” for each classification? (I’m hoping not)
• Is “Classification/Filter” the best terminology? What other jargon would you use?
• How much of this lives in reconstruction, vs should be left up to analysis?



Thank you!


