
MPGD - ECT

μ – Rwell endcap trackers for the EPIC detector at EIC Annalisa D'Angelo

University of Rome Tor Vergata & INFN Rome Tor Vergata Rome – Italy

Scope of the MPGD endcaps in ePIC detector tracking

• Adding two MPGD Endcap Tracking (ECT) disks both in the hadronic and in the leptonic regions increased the number of hits in the $|\eta| > 2$ region to improve pattern recognition.

Technical Performance Requirements

Time resolution 10 ns or less to provide tracking timing

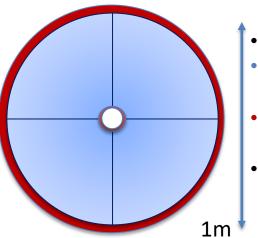
- Fast rise time ~ 20 ÷ 50 ns
- Peaking time 50 ns
- Sampling faster than 50 MHz

Low material budget

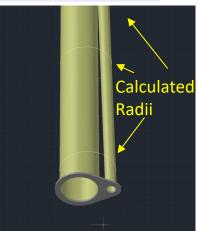
- 1-2 % X₀ - it will be the minimum compatible with the chosen technology

Spatial resolution: 150 μ m or better

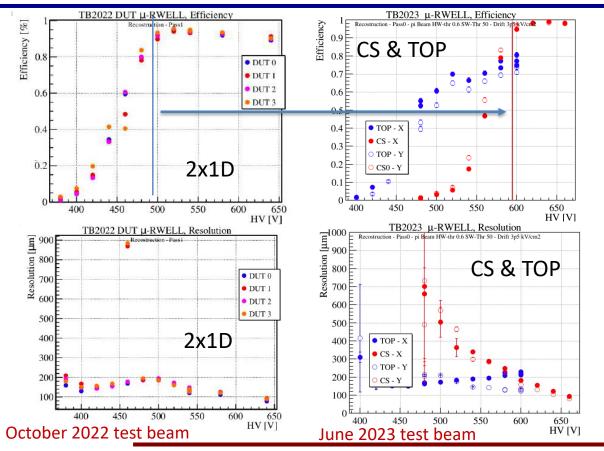
- <150 μ m intrinsic spatial resolution for perpendicular tracks
- Technological optimizations to retain 150 μ m resolution for inclined/curved tracks


High Efficiency

– Single detector efficiency ~ 96 –97 % \rightarrow 92 –94 % combined efficiency for two disks


Detector Geometry: Envelope and Active Regions

MPGD Disk	Max Z Pos (cm)	Disk Outer Radius (cm)	Outer Active Reg. radius (cm)	Calculated Beam pipes radii (mm)	Offset (mm)	Disk Inner Radius (cm)	Inner Active Reg. radius (cm)
HD MPGD 2	163.5	50	45	55.8	22.5	9	10.5
HD MPGD 1	150.5	50	45	53.1	19.9	9	10.5
LD MPGD 1	-112.5	50	45	37.7	-3.1	4.5	6.0
LD MPGD 2	-122.5	50	45	39.2	-3.4	4.5	6.0



- Two couples of disks: Lepton/Hadron Disks
 The geometric envelope should include the electronics front-end boards
- 50 cm external radius/45 cm active region radius – including 5cm outer ring for services.
- Different internal hole dimensions due to divergent beam pipes: 4.5 cm (LD)/9 cm(HD)

MPGD Technology - 2-D Tracking layout tests

1D pitch 0.78 mm

Reference performances:

- 96% efficiency
- 120 μm resolution

CS pitch 1.2mm

- Due to the charge spread the working point is shifted to high voltage/gain
- Spatial resolution improves at high gain reaching 150 μm with a strip pitch of 1.2 mm

Top-r/out pitch 0.78 mm

 low-voltage/gain operation but low efficiency level (80%) due to the geometrical dead zone on the segmented amplification stage

μ-RWELL + GEM

L2=22,48µm Cathode

L5=22,49µm

Nuclear Inst. and Methods in Physics Research, A 936 (2019) 401-404 Contents lists available at ScienceDirect

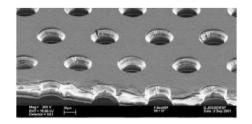
Nuclear Inst. and Methods in Physics Research, A

journal homepage: www.elsevier.com/locate/nima

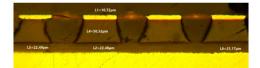
Development of μ -RWELL detectors for the upgrade of the tracking system of CMD-3 detector

L. Shekhtman*, G. Fedotovich, A. Kozyrev, V. Kudryavtsev, T. Maltsev, A. Ruban Budker Institute of Nuclear Physics, 630090, Novosibirsk, Russia Novosibirsk State University, 630090, Novosibirsk, Russia

ARTICLE INFO


Keywords: Tracking detectors Micro-RWELL Micro-pattern gas detectors ABSTRACT

An upgrade of tracking system of Cryogenic Magnetic Detector (CMD-3) is proposed using microresistive WELL technology. CMD-3 is a general purpose detector operating at the VEPP-2000 collider at Budker Institute of Nuclear Physics and intended for studies of light vector mesons in the energy range between 0.3 GeV and 2 GeV. The new subsystem consists of double-layer cylindrical detector and the end-cap discs. Two prototypes, micro-RWELL and micro-RWELL-GEM were built and tested. Gas amplification of micro-RWELL detector was measured with several gas mixtures and maximum gain between 20000 and 30000 was observed. However, maximum gain is fluctuating from measurement to measurement by a factor of 2 and thus a safety margin of 2-3 is needed to provide reliable operation of the device. In order to increase the signal GEM was added to micro-RWELL, new prototype was tested with the same gas mixtures and gains above 105 have been demonstrated. Time resolution achieved for both prototypes are 7 ns for micro-RWELL and 4 ns for micro-RWELL-GEM.


L. Shekhtman, Nuclear Inst. and Methods in Physics Research, A 936 (2019) 401-404

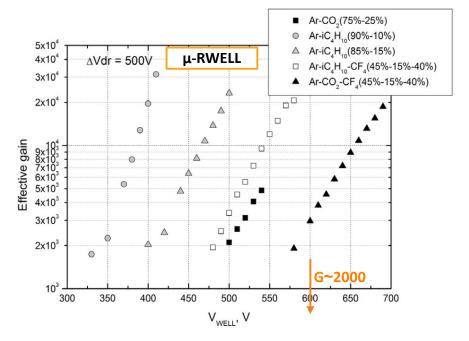
Drift Gap: Shekhtman 3mm – LNF+Roma2 6mm

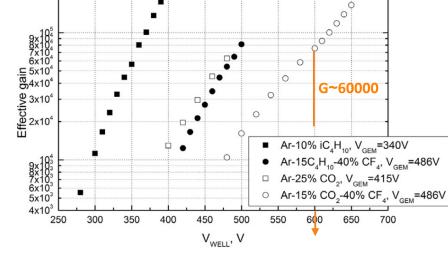
L6=25,17µm

Transfer Gap: Shekhtman 3mm - LNF+Roma2 3mm

Developed for CMD3 upgrade disks (4 sectors 50×50cm²)

The GEM **must be** stretched: sizes larger than 50×50cm² could be critical (depending on the gas gaps size).

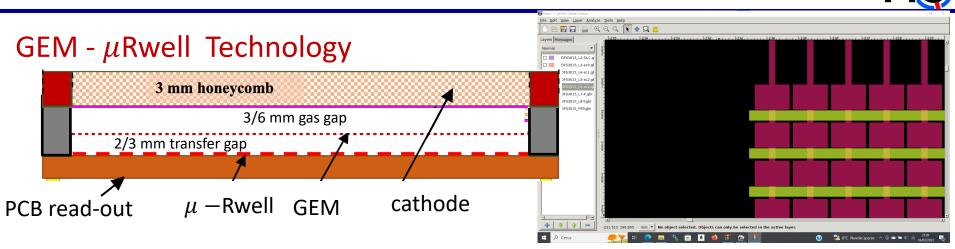

µ-RWELL + GEM – Gain


3x10⁵

2x10⁶

μRWE

L. Shekhtman, Nuclear Inst. and Methods in Physics Research, A 936 (2019) 401–404



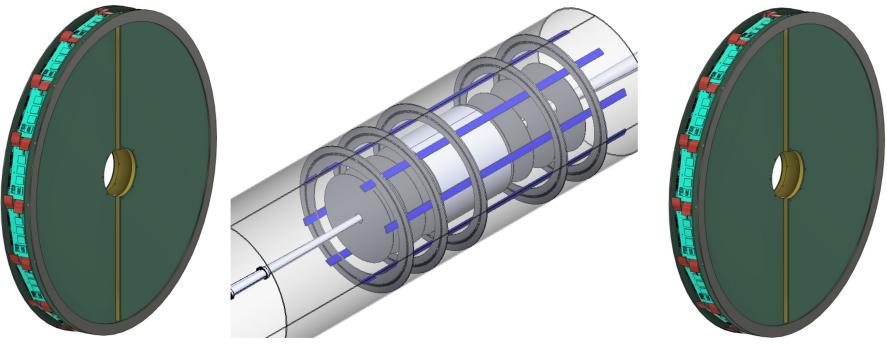
μ-RWELL + GEM

Fig. 4. Gain as a function of voltage on the top electrode of μ -RWELL for different gas mixtures. Voltage across the drift gap is 500 V.

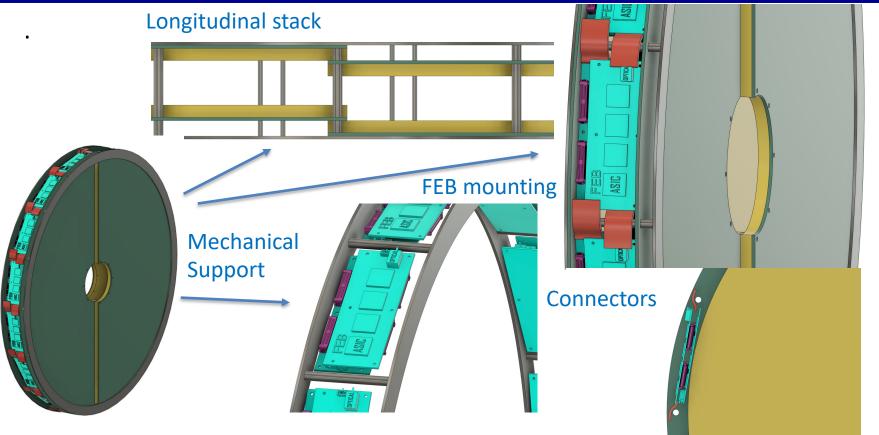
Fig. 5. Gain as a function of voltage on the top electrode of μ -RWELL for GEM voltages providing additional gain of 50–100 and for different gas mixtures. Voltage across the drift gap is 500 V.

Detector Technology Choices: GEM+*µ***Rwell**

- 2D CS readout reduces the gain from 10^4 to $3-4 \ 10^3 \rightarrow$ the detector stability is put at risk
- GEM- μ Rwell hybrid configuration has been chosen to increase the gain in the 10 000 \div 20 000 range
- 2D strip read-out using a "COMPASS-like" scheme
- 500 μm pitch guarantees a spatial resolution better than 150 μm (no need of capacitive sharing))
- A gas gap lager than 3 mm is compatible with single detector efficiency larger than 96%

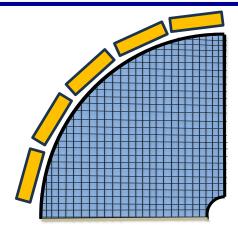

GEM - μ Rwell Technology Combining the CC and µTPC reconstruction (through wheighted average) a a 3 mm honeycomb resolution well below 100 µm could be reached over a wide incidence angle range. 3/6 mm gas gap 2/3 mm transfer gap Space Resolution (µm) 1D Strip R/O: 400um pitch, gain 4000, $80\Omega/\Box$ 10³ = cathode μ – Rwell GEM PCB read-out CC= Charge Centroid θ 10^{2} - ← CC CC 🕂 μ-TPC uTPC ∔ Combined 10 20 30 50 10 40 0 Angle (°) Next test beam Oct/Nov 2024

Endcap Detectors Integration in ePIC


The assigned envelope will include the detectors and the FEB electronics.

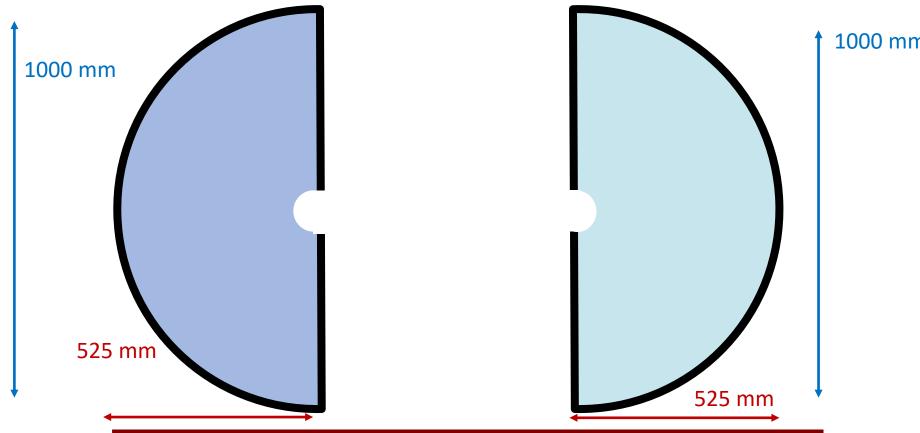
The disks will be attached together and to the support frame under design.

Endcap Detectors Mechanical design in progress

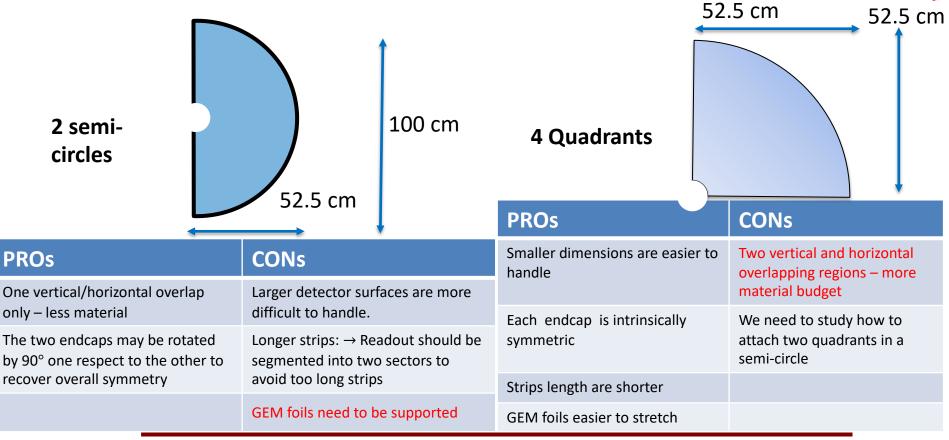


Detector Technology Choices: (X,Y) vs (R, φ) read-out

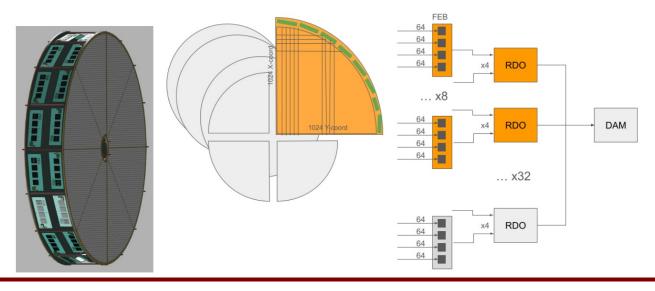
(X, Y) read-out geometry


PROs	CONs
The strip length does not vary much along the active area	Alignment is critical
All readout FE hybrids may be located outside the active area	Routes to read-out connectors must be accurately studied

- (X, Y) readout is preferred vs (R, φ) no FEB on the active area
- 500 μm pitch \rightarrow better than 150 μm intrinsic position resolution
 - Strips routing details is being studied

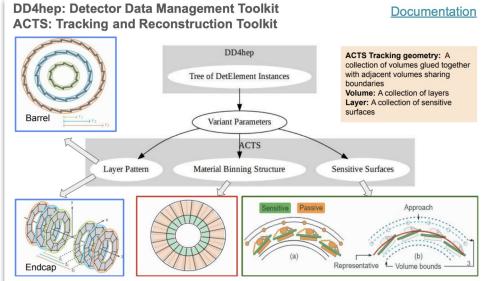

Detector Technology Choices: Detector sectors overlap

ePIC Endcaps – open options

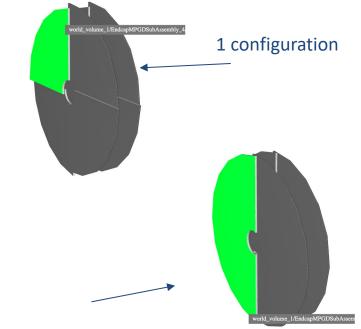


End Cap Tracker figures

- 4 disks each composed of 4 quadrants
- each quadrant has 1024 X-strip and 1024 Y-strip (2048 channels)
- assuming FE ASIC is 64 channels, grouped in 4 chips FEB, 4 to 1 connection FEB-RDO
- each quadrant will need 32 ASICs, 8 FEBs, 2 RDOs
- total amount is 32kChannels, 512 ASICs, 128 FEBs, 32 RDOs



MPGD in ePIC Simulation



- ePIC geometry is based on DD4HEP
- ACTS is a toolkit for charge particle track reconstruction in hep experiments
- All digitization and reconstruction is done in EICrecon based on JANA

2 configuration

By Mariangela Bondi'

- Pairs of disk in electron and hadron endcaps based on uRWell technology
- 2 configuration under development:
 - 1 configuration : 4 quarters
 - 2 configuration: 2 semi-ellipses
- Currently disk made of subtracted solid
 - No overlaps
 - DD4hep-ACTS conversions fail X
 - Disk approximation with trapezoid: working in progress

Involved Institutions & Workforce

INFN Workforce:

• Roma Tor Vergata – Also member of the DRD-1 WP1 Coordinator: A. D'Angelo,

Detector Hardware and QA: E. Sidoretti (PhD) A. Fantini, L. Lanza, Post Doc Simulation & Reconstruction: L. Lanza, A. Fantini, R. Di Salvo FEB Electronics: R. Ammendola

• Genova

FEB Electronics: Paolo Musico, M. Battaglieri (streaming ro)

Catania

Simulation & Reconstruction: Mariagela Bondi'

INFN coordinates the GEM- μ Rwell MPGD ECT – for both the Hadron and Lepton Disks

- INFN will provide the Hadron Disks and related electronics as In-kind contributions
- **Temple U.** (Bernd Surrow , Matt Posik,) are interested taking the responsibility of the Lepton Disks.

The is being performed in close connection with:

the group of Gianni Bencivenni @ INFN LNF and with the JLab detector group (Kondo Gnanvo, Seung Joon Lee)

ng & Installation

FY33

FY34

FY35

Fabrication and Assembly Plans

• Design by end of 2024

FY20

CD-0(A)

FY19

CD

Research & Developmen

Design

onstruction &

Commissionin & Pre-Ops

(A) Actua

FY21

CD-1 (A)

Jun 202

Completed

FY22

• 2025 - 2026 Engineering Test Article and Pre-Production

FY28 FY29

• 2027 - 2029 production & QA

FY23 FY24

• 2030 Commissioning & Installation

FY25 FY26

FY27

CD-3A Jan 2022 CD-3B Apr 2025 Oct 2024	Construction Phase		MPGD
evelopment	Construction Phase Construction of Science Phase RHIC Operation	START DATE	END DATE
	The thinner bars indicate that R&D and design can continue at a small level peyond CD-2 and CD-3	3/1/24	12/31/24
		1/1/25	12/31/26
Infrastructure Co Accelerator Systems	Pocurement, fabrication, Installation & Test	1/1/27	31/12/29
Detector	Plocurement, Tabrication, Installation & Text Accelerator Systems Commissioning & Pre-Ops	1/1/30	6/1/30
	rel 0 Commissioning & Pre-Ops Path Path		

FY31 FY32

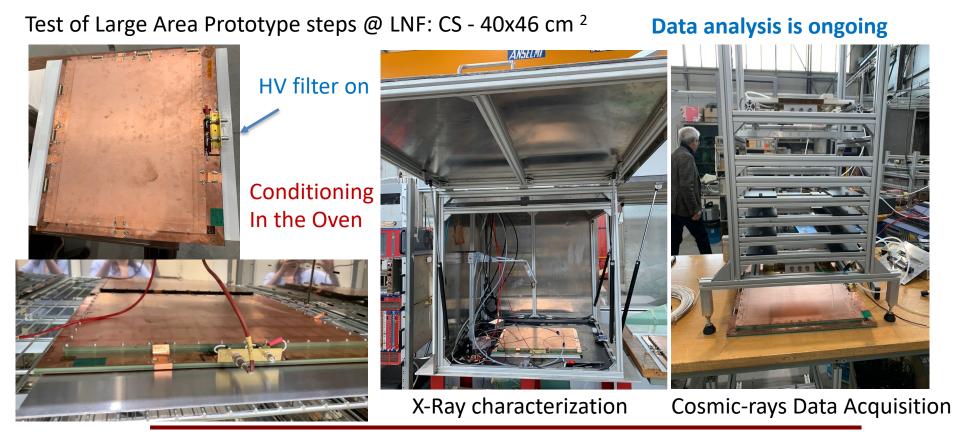
FY30

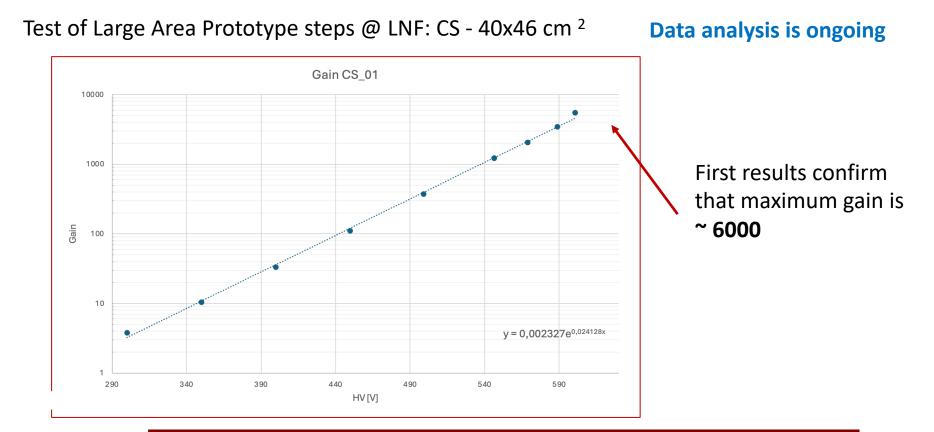
On-going activities

First 10x10 cm² GEM- μ Rwell prototype – synergies with JLAB12 ePI

First GEM- μ Rwell 10x10 cm ² prototypes assembly CERN Test Beam – November 13 – 27 2024.

GEM tension measu **GEM** foil CAN 3C G le on peek frame **GEM** stretching Frame assembling


Infrastructures – synergies with JLAB12


Infrastructures and Tests – synergies with JLAB12

Prototypes Tests – synergies with JLAB12

INFN-Workforce

Re	Catania						
Roma Tor Vergata			Researchers		Position	FTE	
Researchers	Position	FTE	Mariangela Bondì		Tecnologo	10%	
Annalisa D'Angelo	P.O.	50%	Genova				
Lucilla Lanza	RTDb	30%	Researchers		Position	FTE	
Roberto Amendola	Tecnologo	20%	Marco Battaglieri		INFN DR	10%	
Alessia Fantini	Ric. Univ.	30%	Synergic JLAB12 techs				
Rachele Di Salvo	I Ric. INFN	10%	Giovanni Nobili Coll. Tecnico E.R. INFN			50%	
Bruno Benkel *	Assegnista Tec.	100%					
Gaetano Salina	Dir. Ricerca INFN	20%	Daniele Pecchi Associazione Tecnica – UToV		ΓoV	30%	
Karolina Armonaite	Assegn. altro ente	20%	Enzo Reali Incarico di Coll. Tec		co di Coll. Tecnica– I	UToV	30%
Totale FTE		2.8	Enrico Maria Tusi	Incari	co di Coll. Tecnica –	UToV	30%
						1.	4 FTE

* A new experienced post-doc has been selected (DOE- PED2024)

Thank you

Outline

Scope of the MPGD endcap trackers in the EPIC detector.

Pseudo-rapidity coverage: effective η ranges Technical performance requirements Detector Geometry: Envelope and Active Regions Integration of MPGD endcap trackers in the ePIC detector

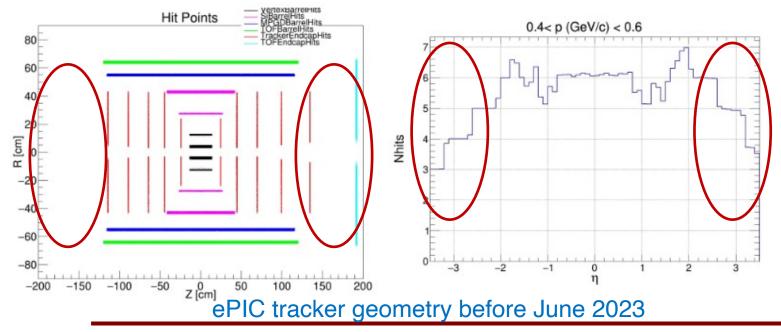
Detector technology

2D – readout challenges and test beam results Hybrid GEM- μ Rwell technology & μ TPC readout (X,Y) readout – 500 μ m pitch

INFN Involvement

Fabrication and Assembly Plans Timeline Workforce

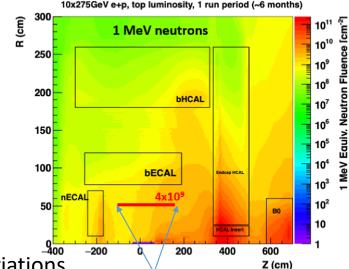
Financial Plan and Requests to INFN


2025 ePIC μRwell Activity

- Coordinate the MPGD endcap tracking project
- Complete the analysis of GEM- μ Rwell 10x10 cm² test beam data:
 - characterization of detector gain, efficiency and position resolution
- Study the detector response to bend/inclined tracks:
 - analysis of μ TPC mode in 2D
- Design and procure the first large area Engineering Test Articles
- Implement an emulator of the SALSA chip response to the GEM- μ Rwell detector
- Contribute to the TDR
- Organize the January 2025 ePIC General Meeting at Villa Mondragone

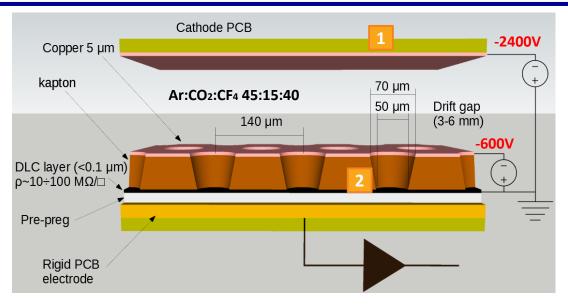
Scope of the MPGD endcaps in ePIC detector tracking

• In May 2023, MC simulations showed that the **tracking** configuration in the **endcap** regions of the ePIC detector, which will experience the **highest backgrounds** in the experiment, **would not provide enough hit points** in the $|\eta| > 2$ region for good pattern recognition.


ePIC Referee Meeting- July 16 2024 - Annalisa D'Angelo

More on Technical Performance Requirements

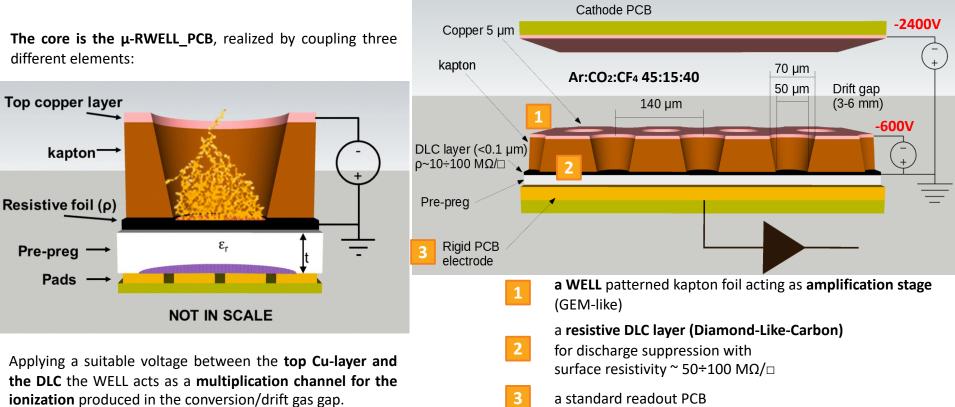
ePI



- Not critical ~ 1 kHz/cm² or less
- Radiation Hardness
 - Not critical for the detectors
 - Important for FEBs and RDO electronics boards
- Temperature Stability
 - Not critical for the detector performances
 - Detector calibration should consider gas pressure variations
- Electronics power consumption and cooling
 - − SALSA ASIC consumption ~ 15 mW/channel at $1.2V \rightarrow 60$ W/disk
 - Air vs liquid cooling is under study at Saclay

Detector Technology Choices µ-RWELL

The **µ-RWELL** is a Resistive MPGD detector (Micro Pattern Gas Detector)

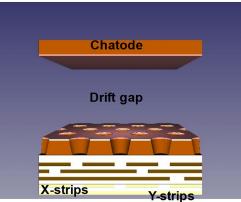

The device is composed of two elements:

- drift/cathode PCB defining the gas gap ($5\mu m Cu$ layer on the bottom side)
- μ -RWELL_PCB (detector core) Multilayer circuit: Well Pattered Polyimide \oplus resistive film \oplus readout PCB

Standard Gas mixture: Ar:CO₂:CF₄ 45:15:40 mixture (it also works with Ar:CO₂ «green» mixture)

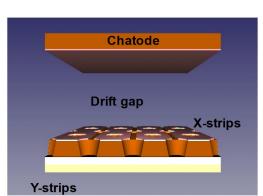
Detector Technology Choices **µ-RWELL**

2-D Tracking layouts



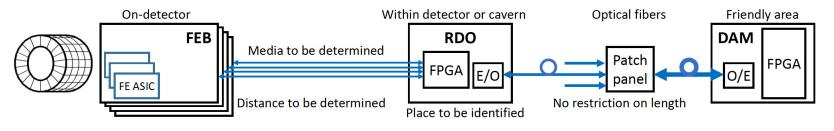
N.2 u-RWELLs 1D (2 © 1D)

October 2022 test beam

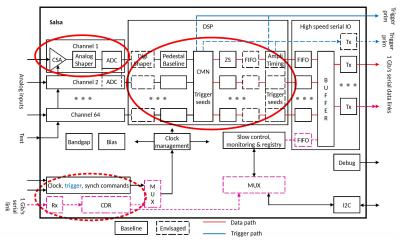

- 780 mm pitch
- 300 mm width
- 10 x 10 cm² active surface
- 128 channels

June 2023 test beam

- 1200 μm pitch
- $300 \ \mu m \ vs \ 1000 \ \mu m \ strips \ width$
- 10 x 10 cm² active surface
- 83 channels
- "Compass-like" strip configuration
- Capacitive sharing


u-RWELL TOP r/out

June 2023 test beam


- 780 μm pitch
- 300 µm width
- 10 x 10 cm² active surface
- 128 channels
- X –strips Top read-out
- Y strips standard read-out

FEB – RDO – DAQ electronics

Preliminary design of SALSA

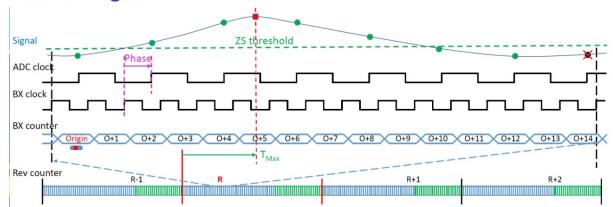
- FEB is based on new
 SALSA chip designed and produced by the
 Saclay/San Paulo group for all MPGD detectors
- Specific FEB form factor must be designed to fit each detector requirements

Roberto Ammendola Paolo Musico

August 2023: Interest of INFN groups to contribute to the MPGD trackers

- 1 year time to make the final decision about the INFN responsibility of the endcap construction
- Joined DRD-1 and eRD108 communities
- **December 2023: Direct contact with ePIC management (Rolf Ent)**
- ePIC/DOE management agreed that INFN takes the leadership of MPGD ECT
- eRD108 \rightarrow PED project: 30 k\$ from DOE to provide a design by the end of 2024.

March 2024: Incremental Design and Safety Review (PDR)


- Detector technical choices and project design communicated to the management
- Very positive feedback

May 2024: MPGD ECT working group reinforced

- Interest expressed by Paolo Musico (INFN GE) and local RM TV digital electronic group to contribute to the FEB design
- Interest expressed by Temple University to contribute to the Lepton Disks construction
- Support from the local INFN Director: electronics workshop and clean room

Readout Strategies

- Signal is continuously sampled with an ADC
- Signal samples above threshold are retained
- Nominal (physics data) readout: signal amplitude and timing is derived → Time of max (as on example) or time of arrival (fitting samples on rising edge)
- \bullet On demand readout: signal shapes or raw non ZS data are provided \rightarrow Calibration, detector studies
- Guarantees best noise immunity and thus best S/N ratio \rightarrow Allows on line common mode noise (CMN) subtraction before ZS

EndCap Tracker Data Bandwidth Estimations

- Physics Data: support two zero suppression modes
 - Nominal: peak finding readout ightarrow 12 bit amplitude, 12 bit time of max, 8 bit ToT
 - On demand: full signal shape readout \rightarrow All samples (12 bit) above threshold (typically 15-25 samples)
- Estimated Physics data bandwidth per Salsa ASIC with channel rate 10 kHz:
 - Peak finding 40 Mbit/s
 - Signal shape 265 Mbit/s
- On line calibration: on demand readout
 - Programmable number of non ZS samples
 - $\bullet\,$ Estimated calibration data bandwidth per ASIC \sim 6 Mbit/s
- FEB RDO link occupancy: ${\sim}30$ % of one 1 Gbit link
- Overall physics frontend data of ECT:
 - \sim 130 Gbit/s for on demand mode
 - \sim 37 Gbit/s for nominal mode

SALSA ASIC Characteristics

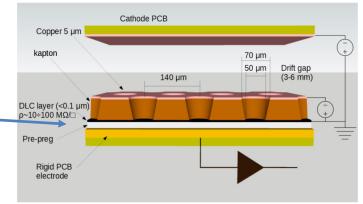
- Versatile front-end characteristics
 - Dedicated to MPGD detectors and beyond
 - 64 channels
 - Large range of peaking times: 50-500 ns
 - Large choice of gain ranges: 0-50, 0-250, 0-500 fC or 0-5 pC
 - Large range of input rates, up to 100 kHz/ch with fast CSA reset (limit assumed for EPIC: 25 kHz/ch)
 - Front-end elements can be by-passed
- Digital stage
 - Fast sampling ADC for each channel on 12 bits (i 10 effective bits) at up to 50 MS/s
 - Possibility under study to double rates by coupling pairs of channels
- Integrated DSP for internal data processing and size reduction, treatment processes to be selected according to user needs
 - Continuous readout compatible with streaming DAQ foreseen at EIC, triggered mode also available
 - Several 1 Gb/s output data links (will use one)
- General characteristics
 - $\bullet~{\sim}1~{\rm cm^2}$ die size, implemented on modern TSMC 65nm technology
 - Low power consumption 15 mW/channel at 1.2V
 - Radiation hardened (SEU, TID)

The µ-RWELL (Micro Resistive Well Detector)

The **µ-RWELL** is a Resistive MPGD detector (Micro Pattern Gas Detector)

Used Gas : $Ar:CO_2:CF_4$ 45:15:40 mixture (it also works with $Ar:CO_2$ «green» mixture) The device is composed of two elements:

- drift/cathode PCB defining the gas gap ($5\mu m Cu$ layer on the bottom side)
- µ-RWELL_PCB (detector core)
 - Multilayer circuit: Well Pattered Polyimide \oplus resistive film \oplus readout PCB
- Amplification stage: \rightarrow 50 µm thick Kapton (Apical®) foil With a 5 µm Cu layer on the top side


```
Resistive stage: \rightarrow DLC (Diamond-Like-Carbon) film sputtered
on the bottom side of the polyimide foil _____
```

Surface resistivity: $ho = 10 \div 100 \ M\Omega/\Box$

the resistivity is function of DLC thickness

The resistive layer strongly suppresses the transition from streamer to spark

=> Allows to achieve **large gains** (> 10⁴), without affecting the capability to operate under high particle fluxes

G. Bencivenni et al.; 2015_JINST_10_P02008

Top copper layer

Resistive foil (p)

Pads

Pre-preg

Strips/

kapton-

The "WELL" acts as a multiplication channel for the ionization produced in the gas of the drift gap

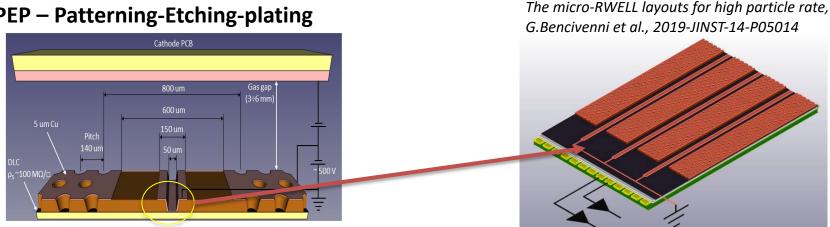
The charge induced on the resistive layer is spread with a time constant:

τ ~ <mark>ρ</mark> x c [M.S. Dixit et al., NIMA 566 (2006) 281]:

 $\rho \rightarrow {\rm ~the~DLC~surface~resistivity~}$

 $c \rightarrow$ the capacitance (per unit area), depending on the distance between the DLC and the readout plane

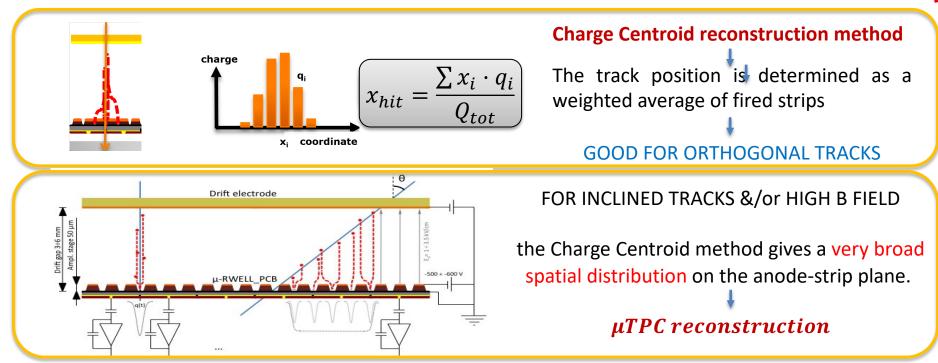
 $C = \varepsilon_0 \times \varepsilon_r \times \frac{s}{t} = 120 \ pF \times L(m) - w = 0.2 \ mm, \ p = 0.4 \ mm \text{ strip read-out}$


- The resistive stage ensures the quenching of the spark amplitude
- As a *drawback, t*he capability to stand high particle fluxes is reduced, but appropriate grounding schemes of the resistive layer solves this problem

NOT IN SCALE

The µ-RWELL Technology

Studies have been focused on the DLC grounding layout to increase the rate capability while maintaining a safe resistivity => The solution is to reduce as much as possible the current path towards the ground connection introducing a high density "grounding network" on the resistive stage of the detector


PEP – Patterning-Etching-plating

The active area is discontinued by grooves that uncover the DLC; then a copper plating, carefully separated from the copper in the active sectors, is disposed to connect the DLC to the ground.

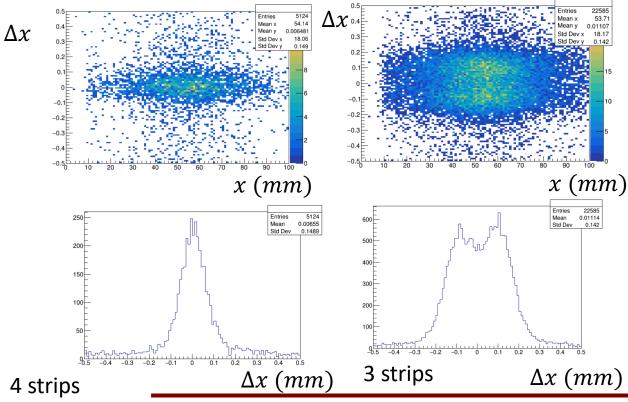
A small dead zone on the amplification stage must be introduced for high stability operation

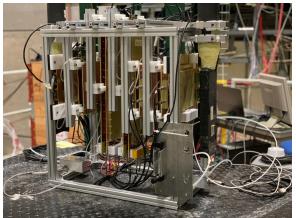
The **µ-RWELL** Technology


The spatial resolution is strongly dependent on the impinging angle of the track \rightarrow A non-uniform resolution in the solid angle covered by the apparatus \rightarrow Large systematical errors.

2D – readout: step by step approach

- 1. The first prototype was a set of 2x1D detectors each having the following specs, rotated by 90 degrees: 5 – 19 October 2022
- 780 µm pitch
- $300 \,\mu\text{m}$ width
- 10 x 10 cm² active surfa
- 128 channels





Test Beam: SPS North Area H8

2D – readout: 780 µm pitch-300 µm width - 10 x 10 cm² active surface

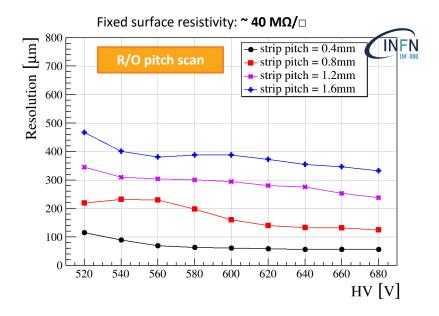
Increasing the pitch read-out the resolution is strongly affected by the number of strips among which the charge is distributed

ePIC giornate nazionali - June 28 2024 - Annalisa D'Angelo

2D – readout: step by step approach

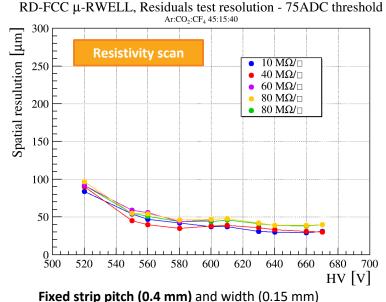
1. 2x1D detectors.

The 2022/2023 tests show that the optimal pitch to obtain 100 μm resolution is the following:


- 400 μm pitch

- 300 μm width

1D - Rho e pitch scan



Increase the R/O pitch

=

As expected: reduction of the space resolution.

In collaboration with G. Cibinetto, R. Farinelli, L. Lavezzi, M. Gramigna, P. Giacomelli, E. De Lucia, D. Domenci, A. D'angelo, M. Bondi, <u>M. Scodeggio, I. Garzia, M. Melindi</u>

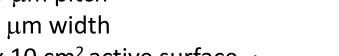
rixed strip pitch (0.4 mm) and width (0.15 mm

No effects in this resistivity range.

 \rightarrow DLC resistivity uniformity is not a crucial parameter for space resolution

2D – readout: step by step approach

2. The second prototype reads the 2-nd coordinate on the "top" copper layer


cathode

Gas gap

Same readout geometry as in the bottom:

- 780 µm pitch
- 300 µm width
- $10 \times 10 \text{ cm}^2$ active surface
- 128 channels

The effect charge collection on the «top» RWELL layer is the object of investigation.

Al – Faraday Cage glue

Honevcomb/millifoam

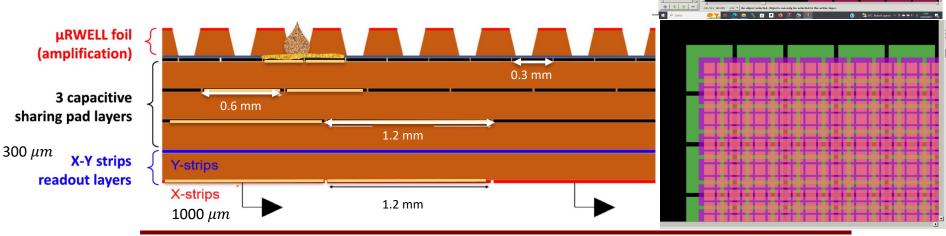
FR4 glue

glue FR4 glue

Kapton Copper

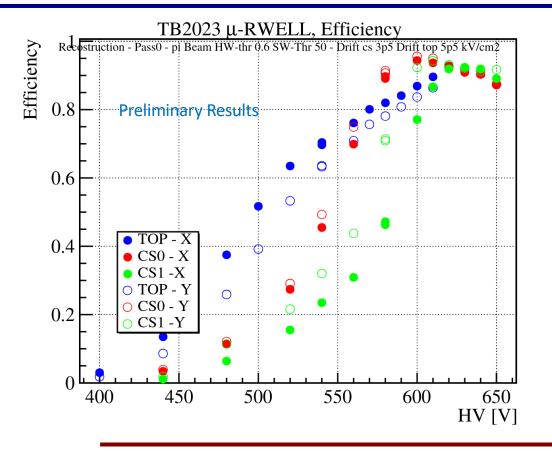
Copper Kapton DLC prepreg

Copper Kapton Glue


FR4 glue

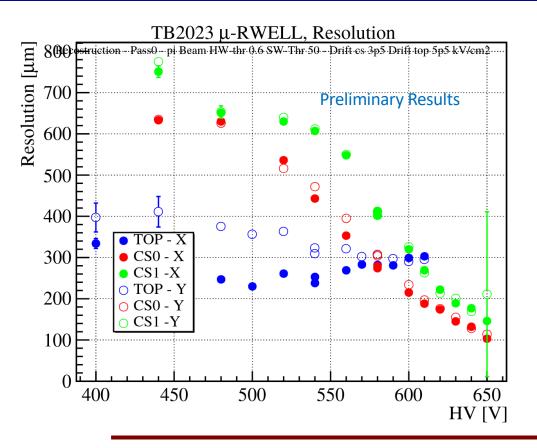
glue FR4 glue Al – Faraday Cage

Honevcomb/millifoam



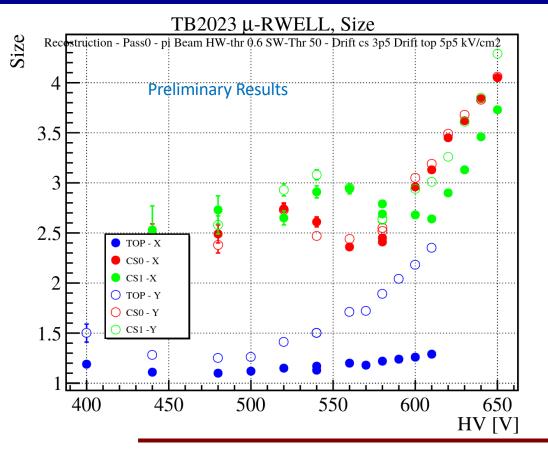
- 2D readout: step by step approach
- 3. The third prototype reads both coordinates on the bottom in "COMPASS-like" strips configuration with capacity sharing read-out:
- 1200 μm pitch
- 300 μm vs 1000 μm strips width
- 10 x 10 cm² active surface
- 83 channels

ePIC giornate nazionali - June 28 2024 - Annalisa D'Angelo


Preliminary results from June test beam

Efficiency

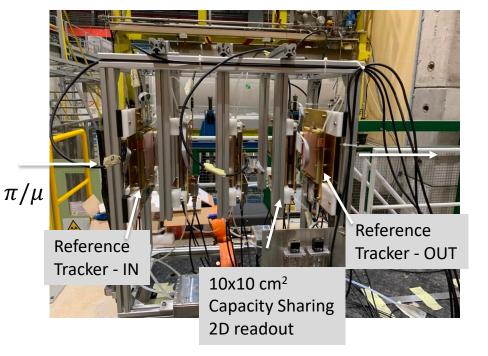
- CS readout reaches a plateau at higher HV values than standard readout scheme.
- TOP readout is not yet at plateau at 600 V
 (HV was chosen not to to be raised to higher values)


Preliminary results from June test beam

Resolution

- CS readout reaches 100 μm resolution at highest HV values (starting from 1200 μm pitch)
- TOP readout resolution is fixed at 250-300 μm (pitch is 780 μm)

Preliminary results from June test beam

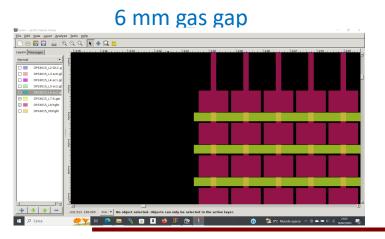


Cluster Size

- CS readout Cluster Size is not lower than 2.5 strips and increases to 4 at higher HV.
- higher cluster size → better resolution
- TOP readout cluster size is fixed at 1.3
- Bottom readout cluster size increases from 1.5 to 2.3 with HV

On-going Activities

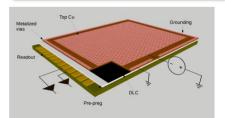
TEST BEAM at CERN SPS North Area H8: 16 - 30 October 2024


Photo taken during 5 – 19 October 2022 test beam

First Large Area Detector prototype

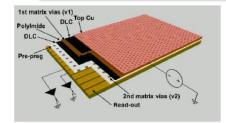
A first large area 40 x 46 cm² detector has been delivered to Roma Tor Vergata and is being characterized **in collaboration with the LNF group lead by Gianni Bencivenni**

1200 μm pitch 300 μm vs 1000μm strips



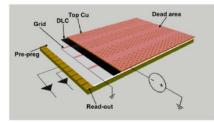
The µ-RWELL Developments: High-rate capability and improved grounding scheme

Studies have been focused on the DLC grounding layout to increase the rate capability while maintaining a safe resistivity => The solution is to reduce as much as possible the current path towards the ground connection introducing a high density "grounding network" on the resistive stage of the detector 2015 2017 2018 2018 2020 time 2020 time


R&D on low-rate layout

SRL_Single-Resistive-Layer the DLC grounding is provided all around the active area.

detection efficiency: $\frac{G}{G_0} \sim 1 \text{ up to } 35 \text{ kHz/cm}^2$


R&D on high-rate layout (grounding network also in the active area)

DRL-DoubleResistive Layer

Two DLC layers connected by a matrix of conductive vias and grounded by a further matrix of vias to the readout electrodes

 $\frac{G}{G_0} > 0.90 \text{ up to } 3MHz/cm^2$

SG –Silver Grid

a SRL with a 2-D grounding conductive strip lines realized on the DLC layer.

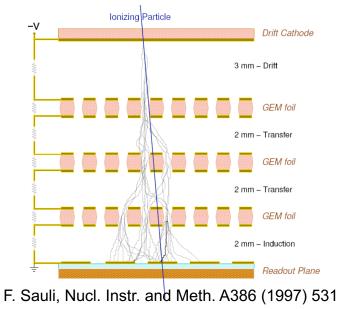
 $\frac{G}{G_0} > 0.90 up to 20 MHz/cm^2$

PEP-Patterning-Etching-plating

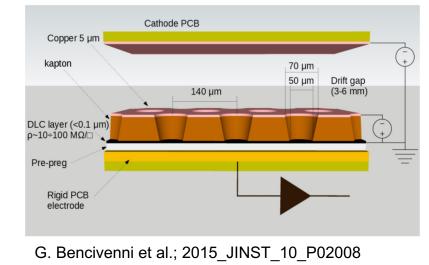
Cathode PCE

time

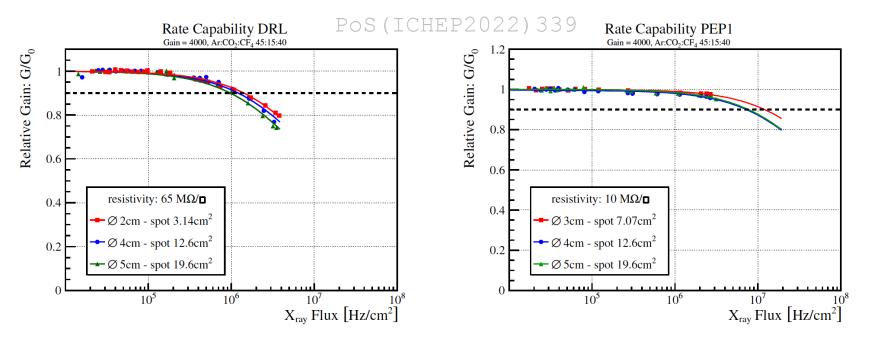
the grounding grid of the DLC is patterned by etching a groove in the base material from the top


 $\frac{G}{G_0}$ > 0.90 up to 20MHz/ cm²

The CLAS12 DC TRACKING UPGRADE

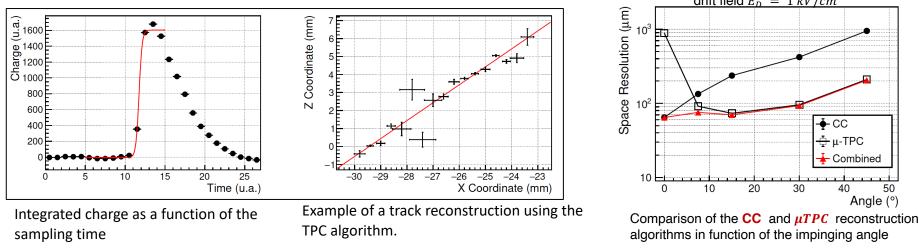


Two MPGD detector technologies have been discussed, triple-GEM and μ -RWELL


Large area triple-GEM detectors have been used in experiments (PRad, SBS, ...).

- μ-RWELL technology is new, only small prototypes have been tested:
 - \rightarrow will require extensive R&D.
- \blacktriangleright µ-RWELL detector is best suited for CLAS12:
 - low material budget, easy to build, less support structures in the active volume of the detector.

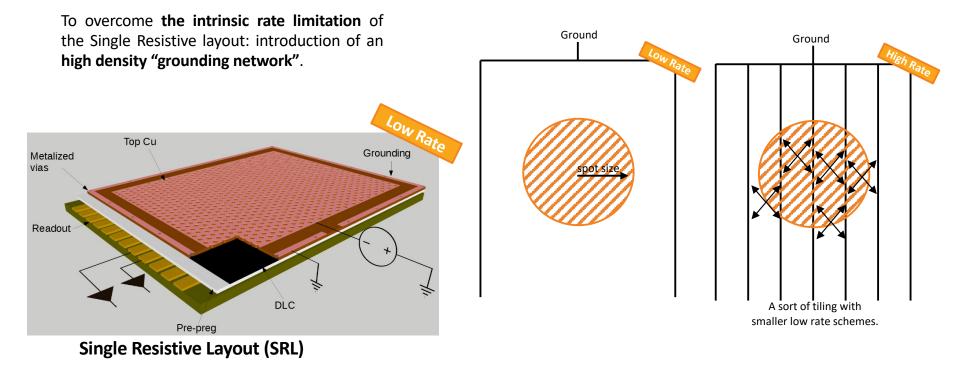
The High-Rate solution: PEP


Rate capability measured with 5.9 keV X-rays with Double Layer μ -RWELL (DRL) and with PEP

NB: a photon flux around 1 MHz/cm², which corresponds to a m.i.p. rate of 3 MHz/cm².

The μ -RWELL Development for Large Area Detectors : Spatial resolution $\rightarrow \mu$ TPC reconstruction ρ

A possible solution : *µTPC reconstruction*

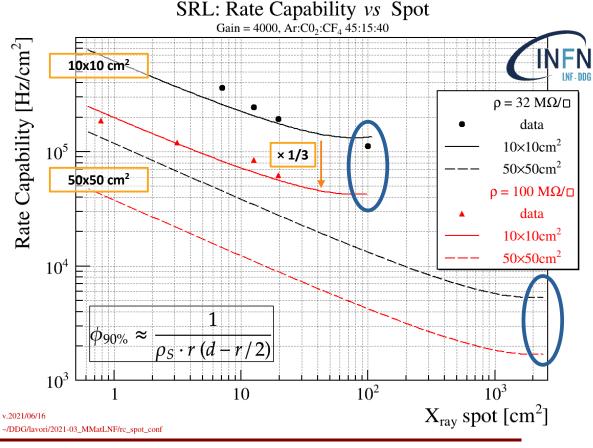

- > The electrons created by the ionizing particle drift towards the amplification region
- In the μTPC mode from the knowledge of the drift time and the measurement of the arrival time of electrons, the track segment in the gas gap is reconstructed
- > The fit of the analog signal gives the arrival time of drifting electrons.
- > By the knowledge of **the drift velocity**, the 3D trajectory of th ionizing particle in the **drift gap** is reconstructed. drift field $E_p = 1 \frac{kV}{cm}$

18/04/24

The $\mu\text{-RWELL}$ – High Rate scheme

Spot Effect for SRL – Manufacturer plot

From the mathematical model:

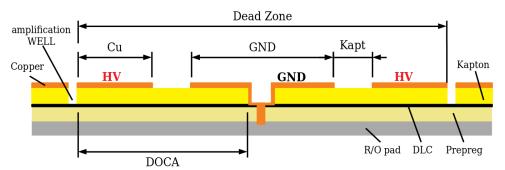

 detectors with same size but different resistivity exhibit a rate capability scaling as the inverse of their resistivity: × 1/3

2. for the SRL, **increasing the active area** from $10 \times 10 \text{ cm}^2$ to $50 \times 50 \text{ cm}^2$ the rate capability should go down to few kHz/cm²

3. thus using a DLC **ground sectoring** every 10/20/30 cm, detectors could achieve rate capability up to 100kHz/cm² (with X-ray)

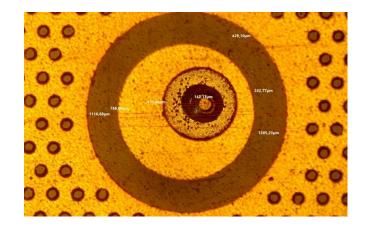
Different primary ionization \Rightarrow

Rate Cap.m.i.p. = 3×Rate Cap.x-ray



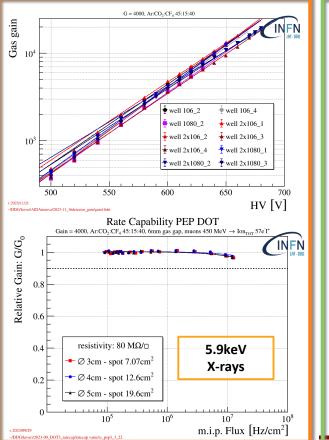
M. Giovannetti - μ-RWELL @ LNF

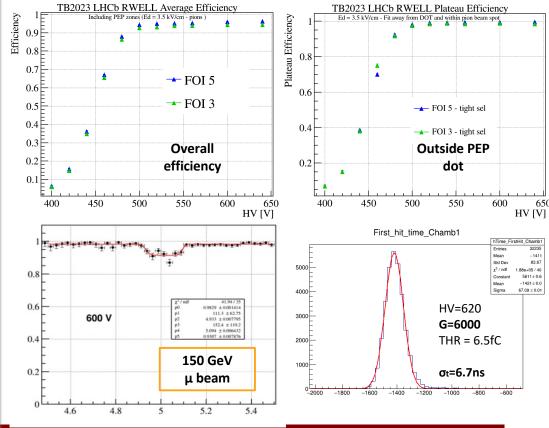
The PEP-dot **µ-RWELL**



DLC-GND	Dead Zone	GND width	Insulation	DOCA
pitch [mm]	[mm]	[mm]	gap [mm]	[mm]
9	1.1 (2%)	0.6	0.25	

- The most recent high rate layout
 - Patterning–Etching–Plating
- The DLC ground connection is established by creating metalized vias from the top Cu layer through the DLC, down to the pad-readout of the PCB
- The dead zone is ~2%




18/04/24

PEP-dot – results

650

M. Giovannetti - µ-RWELL @ LNF