

MPGD - ECT

$\mu-TPC$ readout and synergies with the ePIC detector Annalisa D'Angelo

University of Rome Tor Vergata & INFN Rome Tor Vergata Rome – Italy

µ-RWELL Position Resolution

The spatial resolution is strongly dependent on the impinging angle of the track \rightarrow A non-uniform resolution in the solid angle covered by the apparatus \rightarrow Large systematical errors.

A possible solution : *µTPC reconstruction*

- > The electrons created by the ionizing particle drift towards the amplification region
- In the μTPC mode from the knowledge of the drift time and the measurement of the arrival time of electrons, the track segment in the gas gap is reconstructed
- > The fit of the digitized charge signal as a function of the sampling time gives the arrival time of drifting electrons.
- > By the knowledge of **the drift velocity**, the 2D trajectory of the ionizing particle in the **drift gap** is reconstructed.

G. Bencivenni et al 2021 JINST 16 P08036

Figure 5. A simplified sketch showing how a non orthogonal track affects the number of fired strips.

Figure 6. Sketch of the experimental setup with the coordinate system.

ePIC Collaboration Meeting July 26 2024 - Annalisa D'Angelo

The μ -RWELL Development for Large Area Detectors : Spatial resolution $\rightarrow \mu$ TPC reconstruction

Z

The μTPC reconstruction algorithm:

$$_{k} = v_{drift} \cdot (t_{k} - t_{0})$$

14

12

10

2

0

The μTPC algorithm requires knowledge of:

- the reference time t₀
- the strip charge arrival time t_k
- the charge drift velocity v_{drift}

It requires a fit for each hit strip

Figure 7. Charge signal as a function of the sampling time fitted with a Fermi-Dirac function:

$$f(t) = f_0 + \frac{q_k}{1 + e^{-(t - t_k)/\tau}}.$$

PDG

G. Bencivenni et al 2021 JINST 16 P08036

CF

Ar-CH 90-10

E (V/cm)

Electron drift velocity of different gasses,

as a function of the applied electric field

3000

4000

5000

СН

2000

Ar-CO 70-30

1000

Tests performed on 1D μ –Rwell prototypes

1D 400 μ m pitch Ar:C02:CF4 40:14:45 Gas mixture

Figure 3. Experimental setup: all the detectors have a 10×10 cm² active area. The distance between the two μ -RWELL detectors is 30 cm.

- The reference time t_0 is provided by plastic scintillators providing the DAQ trigger
- The reconstructed track: $z = p_0 + p_1 x$ is used to provide the "measured" x at the middle plane of the detector: $x = \frac{z_c - p_0}{p_1}$

Figure 8. Example of a 45° track segment as reconstructed using the μ TPC algorithm with the linear fit: $z = p_0 + p_1 \cdot x$. The smaller the charge collected on a strip, the larger the *x* coordinate error.

G. Bencivenni et al 2021 JINST 16 P08036

Tests performed on 1D μ –Rwell prototypes

Figure 11. The results of the two reconstruction algorithms, over a large angular range, for various drift field values.

G. Bencivenni *et al* 2021 *JINST* **16** P08036

Tests performed on 1D μ –Rwell prototypes

1D 400 μ m pitch Ar:C02:CF4 40:14:45 Gas mixture

Combined results of 1D space resolution from charge centroid (CC) and μ -TPC algorithms

Future test on 2D GEM+ μ Rwell+ μ TPC

2D GEM - μ Rwell Technology

New detector holders

- Two 2D 10cm x10 cm GEM- prototype with 400 μm pitch à la Compass are being produced
- A Test beam will take place at CERN on 13-27 November 2024.
- The detector response will be tested as a function of the tracks angle in 2D

2D 10x10 cm² GEM- μ Rwell prototype assembly

ePIC Collaboration Meeting July 26 2024 – Annalisa D'Angelo

2D 46x38 cm² Large Area μ Rwell prototype with capacitive Sharing

30 mm drift gas gap

With capacitive sharing show good 3D track reconstruction

Charge sampling at 50 MHz Number of sampling larger than the maximum drift time

Precise t_k determination in the data stream: rise-time fit not the time of the maximum collected charge Readout Strategies

ZS threshold

(as on example) or time of arrival (fitting samples on rising edge)

• Nominal (physics data) readout: signal amplitude and timing is derived \rightarrow Time of max

Requirements to the DAQ electronics

ADC cloc BX clock

Rev counte

Signal is continuously sampled with an ADC
Signal samples above threshold are retained

• Start time t₀

μ -TPC PROs and Cons

PROs

The μ -TPC algorithm provides:

- Improved position resolution for Inclined/bent tracks
- The timing information is embedded in the detector response

CONs

The μ -TPC algorithm requires:

- Precise charge timing information
- A start timing information
- A fit for each strip signal
- A fit for each track
- Never systematically applied on 2D μ-Rwell detectors
- Never applied to 2D GEM- μ-Rwell detectors
- Very complicated for multiple tracks
- Is it compatible with charge sharing?