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u-RWELL Position Resolution ep@

Charge Centroid reconstruction method
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The spatial resolution is strongly dependent on the impinging angle of the track = A non-uniform resolution
in the solid angle covered by the apparatus —» Large systematical errors.
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The p-RWELL Development for Large Area Detectors : Spatial resolution — uTPC reconstructio /

A possible solution: uTPC reconstruction
» The electrons created by the ionizing particle drift towards the amplification region

» In the uTPC mode from the knowledge of the drift time and the measurement of the arrival time of electrons, the
track segment in the gas gap is reconstructed

» The fit of the digitized charge signal as a function of the sampling time gives the arrival time of drifting electrons.

» By the knowledge of the drift velocity, the 2D trajectory of the ionizing particle in the drift gap is reconstructed.
G. Bencivenni et al 2021 JINST 16 P08036
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Figure 5. A simplified sketch showing how a non orthogonal ~ Figure 6. Sketch of the experimental setup
track affects the number of fired strips. with the coordinate system.
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The p-RWELL Development for Large Area Detectors : Spatial resolution — uTPC reconstructio /

The uT PC reconstruction algorithm: Zy = Ud”rift . (tk — tO)

The uTPC algorithm requires & B el T L]
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Figure 7. Charge signal as a function of the sam- . . .
|t reqUires d f|t for eaCh h|t Str‘|p pling time fitted with a Fermi-Dirac function: Electron drift velocity of different gasses,

as a function of the applied electric field
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G. Bencivenni et al 2021 JINST 16 P08036
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Tests performed on 1D u —Rwell prototypes
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Figure 3. Experimental setup: all the detectors have a 10 X 10 cm? active area. The distance between the 0 E / '_'_"
two p-RWELL detectors is 30 cm. E ,i_./
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plastic scintillators providing the DAQ trigger

Figure 8. Example of a 45° track segment as recon-

structed using the pTPC algorithm with the linear
* The reconstructed track: z = Po +P1 X fit: z = po + p - x. The smaller the charge collected

is used to provide the “measured” x at the on a strip, the larger the x coordinate error.

. v ZcDo
mlddle plane Of the detector. X = 122 G. Bencivenni et al 2021 JINST 16 P08036
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Tests performed on 1D u —Rwell prototypes

10° = BB et | .
= o _:\ 3 Ey=2.0"/,0 vp=74"",. || 1D 400 um pitch

CAVY m 2
AN 5 Ep=1.0 e, vo=40 ", F| Ar:C02:CF4
AN —8— E,;=05"Y/__ v;=20""/

——= 40:14:45

Space Resolution (um)
I \
Space Resolution (um)

2 o /’ o
1 = 4E,-30%/_} 102 &——\—t"”"‘“/ —4 Gas mixture
- o . P
- Soh 5 A Ey=20", |-
[ Xo="E20E T pE,= 109
2k qk $-E, =05/
S0 e S [ Su— 10 by gy gy
0 10 20 30 40 50 0 10 20 30 40 50
Angle (°) Angle (°)
(a) CC space resolution. (b) pTPC space resolution.

Figure 11. The results of the two reconstruction algorithms, over a large angular range, for various drift field
values.

G. Bencivenni et al 2021 JINST 16 P08036
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Tests performed on 1D u —Rwell prototypes

ePi

1D 400 um pitch  Ar:C02:CF4 40:14:45 Gas mixture

—~10° 103
=10° = - =10
= X =
5 [\ . — 5
s [\ ece 5
.2 )(// = u-TPC =
(0] 2 ()
o 102 Bl =\ -4« Combined || C 102
) i ) |- o ® Y !
() )
= u-TPC
E=0.5 KV/cm E=3 KV/cm [z Combined
0 10 20 30 40 50 0 10 20 30 40 50
Angle (°) Angle (°)

Combined results of 1D space resolution from charge centroid (CC) and u-TPC algorithms
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Future test on 2D GEM+uRwell+ u TPC

2D GEM - uRwell Technology

3 mm honeycomb «

3/6 mm gas gap

2/3 mm transfer gap

PCB read-out p —Rwell GEM cathode -
New detector holders

« Two 2D 10cm x10 cmm GEM- prototype with 400 um pitch a la Compass are being produced
* A Test beam will take place at CERN on 13-27 November 2024.

* The detector response will be tested as a function of the tracks angle in 2D
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2D 46x38 cm? Large Area uRwell prototype with capacitive Sharing %

By Carlo Gustavino

Ar:CO2 70:30 590V

30 mm drift gas gap

First tests on large gas gap e T
With capacitive sharing show good 3D track reconstruction
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Requirements to the DAQ electronics

Start time t,
Charge sampling at 50 MHz
Number of sampling larger than the maximum drift time

Precise t,determination in the data stream: rise-time fit not the time of the maximum

collected charge Readout Strategies
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o Signal is continuously sampled with an ADC
@ Signal samples above threshold are retained

o Nominal (physics data) readout: signal amplitude and timing is derived — Time of max

(as on example) or time of arrival (fitting samples on rising edge)

o On demand readout: signal shapes or raw non ZS data are provided — Calibration,

detector studies

o Guarantees best noise immunity and thus best S/N ratio — Allows on line common mode

noise (CMN) subtraction before ZS
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___u-TPC PROs and Cons

ePi

PROs

The u-TPC algorithm provides:

* Improved position resolution for
Inclined/bent tracks

e The timing information is
embedded in the detector
response

CONs
The u-TPC algorithm requires:

* Precise charge timing information

e Astart timing information

* Afit for each strip signal

e Afit for each track

* Never systematically applied on 2D
u-Rwell detectors

* Never applied to 2D GEM- u-Rwell
detectors

* Very complicated for multiple tracks

* Is it compatible with charge
sharing?
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