

Joint EIUCG/ePIC Collaboration Meeting ePIC Electronics Development - MPGD

Fernando Barbosa L3 CAM WBS 6.10.08

Chief Electrical Engineer

July 22 -27, 2024 Electron-Ion Collider

Outline

- Streaming Readout
 - Chain, Interconnection Model
- eRD109 Initiatives
- SALSA
- Resources
- Timeline
- Outlook

EIUCG/ePIC Collaboration Meeting, July 22 -27, 2024

F, Barbosa

Interconnection Model

- Consider low impedance and multiple connections for input signal return currents.
- Floating power supplies allow for GND reference at the detector to the hall clean GND column in IP6.
- Make provisions for GND connections on PCBs and detectors.
- Consider segregating subdetector systems' grounding.
- Use low impedance cables.

Electron-lon Collider EIUCG/ePIC Collaboration Meeting, July 22 -27, 2024

eRD109 Initiatives

- Addresses ASIC and Electronics R&D needs.
- □ FY23 Proposals submitted in October 2022 (DAC R&D Review August 2022)
 - Contract awards took longer than expected.
- □ FY24 Proposals submitted in July 2023 (DAC R&D Review August 2023)
 - Contract awards should now be in synch with FY funding
 - Continuation of previous work.

□ FY25 Proposals due 1 July 2024 (DAC R&D Review August 2024)

R&D completion dates have been included in P6

- Si-related R&D tends to have longest times to complete
- ASIC completion is ~4 years, compatible with EIC detector schedule.

□ ASIC & Electronics:

- □ Discrete/COTS Calorimeters, SiPMs, 12-14 bit
- □ CALOROC Calorimeters, SiPMs, 10 bit *
- □ EICROC AC-LGAD, pixel *
- $\Box \ \mathsf{FCFD} \mathsf{AC}\text{-}\mathsf{LGAD}, \, \mathsf{strip}$
- □ ALCOR dRICH, SiPM, 1 p.e.
- □ SALSA MPGD.

*Considerable commitment of resources by OMEGA/IN2P3.

Electron-Ion Collider

EIUCG/ePIC Collaboration Meeting, July 22 -27, 2024

- Original plan: R&D until mid-FY27.
- But ... No additional OPC funds for R&D.
- FY25 is the last year for eRD109 submissions.
- FY25 funds SALSA proposal to completion.
- FY26+ funds from activities in P6 for Engineering & Design (PED) and construction.

SALSA

MPGD – SALSA (CEA-Saclay, U. Sao Paulo)

- 64 Ch
- 65 nm CMOS
- Peaking time: 50 500 ns;
- Inputs: Cdin<200 pF; Dual polarity; Q: 3 250 fC
- ADC: 12 bits, 5 50 MSPS.
- Extensive data processing capabilities
- I2C configuration.
- Triggerless and triggered operation;
- Several 1 Gbps links.
- Power: 15 mW/Ch; Radiation Tolerant.
- Approximate quantities and costs.
- Costs include mask sets, fabrication and packaging, wrt quantities needed.

- Production
- 65 nm: \$750 k masks + \$3.5 k per wafer
- Packaging BGA: \$3-\$7.5 per chip.

Electron-Ion Collider

EIUCG/ePIC Collaboration Meeting, July 22 - 27, 2024

SALSA0_analog

1.5x1 mm²

- SALSAO (IP blocks): FY23
- SALSA1: FY23 FY24
- SALSA2: FY23 FY25
- SALSA3: FY25 FY26
- SALSA: FY27 FY28

Resources – Design, Development, Construction

Detector System		Channels	SensorTechnology	Redout Technology	Institution
Si Tracking					
	3 vertex layers	7 m^2	MAPS	lpGBT, VTRX+	STFC, UK, ORNL
	2 sagitta layers	368 pixels	MAPS	lpGBT, VTRX+	STFC, UK, ORNL
	5 backward disks	5,200 MAPS sensors	MAPS	lpGBT, VTRX+	STFC, UK, ORNL
	5 forward disks		MAPS	lpGBT, VTRX+	STFC, UK, ORNL
MPGD Tracking					
	Barrel, e & H Endcaps	202 k	uRWELL, MicroMegas	SALSA	CEA, OMEGA, JLab
orward Calorimeters					
	LFHCAL	63,280	SiPM	CALOROC	ORNL, Debrecen
	HCAL Insert	8 k	SiPM	CALOROC	ORNL, Debrecen
	pECAL W/SciFi	16,000	SiPM	Discrete	IU
arrel Calorimeters					
	HCAL	7,680	SiPM	CALOROC	ORNL, Debrecen
	ECAL SciFi/Pb	5,760	SiPM	CALOROC	U Regina, ORNL
	ECAL Imaging Si ASTROPIX	500 M pixels	Astropix		KIT,NASA (GSFC), ANL
ackward Calorimeters					
	nHCAL	3,256	SiPM	CALOROC	ORNL
	ECAL (PWO)	2,852	SiPM	Discrete	IU, EEEMCAL Consortium
ar Forward					
	B0: 3 Crystal Calorimeter	135	SiPM/APD	Discrete	IU, JLab
	B0: 4 AC-LGAD layers	688,128	AC-LGAD Pixel	EICROC	IJCLab, OMEGA, BNL, ORNL, Rice
	2 Roman Pots (RP)	524,288	AC-LGAD Pixel	EICROC	IJCLab, OMEGA, BNL, ORNL, Rice
	2 Off Momentum (OMD)	294,912	AC-LGAD Pixel	EICROC	IJCLab, OMEGA, BNL, ORNL, Rice
	ZDC: Crystal Calorimeter	900	SiPM/APD	Discrete	IU, JLab
	ZDC: HCAL	9,216	SiPM	CALOROC	ORNL, Debrecen, JLab
ar Backward					
	Low Q Tagger 1	33,030,144	Timepix4		U. Glasgow
	Low Q Tagger 2	33,030,144	Timepix4		U. Glasgow
	Low Q Tagger 1+2 Cal	420 (2x210)	SiPM	CALOROC	U. York
	2 Lumi PS Calorimeter	3,360 (2x1680)	SiPM	Discrete	U. York
	2 Lumi PS Tracker	128,000 (2x64,000)	AC-LGAD Strip	FCFD/EICROCx	FNAL, OMEGA, Hiroshima, NTU, ORNL, UIC, UH, Rice, KSU, Tokyo
	Lumi Direct Photon Calorimeter	100	SiPM	Flash250	AGH Krakow, JLab
PID-TOF					
	Barrel bTOF	2.359.296	AC-LGAD Strip	FCFD/EICROCx	FNAL, OMEGA, Hiroshima, NTU, ORNL, UIC, Rice, BNL, KSU, Tokyo
	Hadron Endcap fTOF	3.719.168	AC-LGAD Pixel	EICROC	IJCLab. OMEGA. BNL. ORNL. Rice
PID-Cherenkov		., .,			
	dRICH	317.952	SiPM	ALCOR, VTRX+	INFN (BO, FE, TO)
	ofRICH	69 632			RNI ENAL USA
	handler	22,032			

Responsibilities for development of the electronics needs to be well defined and assigned.

- Institutions expressions of Interest.
- BNL, JLab Support as needed.
- Covering Adapters, FEBs, RDOs, GTUs, DAMs.

Timeline - Project

 Construction and Installation includes procurements and deliveries and are initiated at different times of this phase.

Bulk of Construction & Installation phase for Electronics: April 2025 – October 2029.
 Installation of some items may be extended to April 2031.

Electron-Ion Collider

EIUCG/ePIC Collaboration Meeting, July 22 -27, 2024

Timeline cont. – Development to Installation

EIUCG/ePIC Collaboration Meeting, July 22 -27, 2024

Timeline cont. - Installation

EIUCG/ePIC Collaboration Meeting, July 22 -27, 2024

F, Barbosa

Outlook

- Commit resources (institutions, groups, personnel) to develop the readout electronics (engineering, design, construction).
- □ Adapter define geometry, interconnects, power distribution.
- FEB define geometry, interconnects, power needs:
 Schematics, PCB footprint/layout/stackup, power components synergy with others.
 In preparation for ASIC availability.
- □ RDO define location, interconnects, power needs:
 - □ Schematics, PCB footprint/layout/stackup, power components synergy with others.
 - □ Build upon current developments of ppRDO and dRICH RDO.
 - □ Select fiber transceiver.
- □ Testing develop test requirements (PCBs and system).
- Production develop strategy for fabrication, standards, QA/QC, including testing, towards installation.