POWER CONVERSION & VOLTAGE REGULATION FOR ePIC DETECTOR ELECTRONICS

FRIDAY JULY 26th PRESENTATION AT LEHIGH UNIVERSITY **ePIC WORKING GROUP MEETING JULY 2024** Tim Camarda for Brookhaven National Lab

- **DC**|**DC** converter options ullet
- **Power Distribution** ullet
- High-Frequency commercial DC|DC synchronous buck converter rad testing ٠
- CERN DC|DC buck converter & controller & availability •
- FE / ASIC & RDO board applications ullet
- **CERN tested LDO Linear Regulator testing** ullet

DC Buck Converter (step-down) Topology

- Fig 1. Non-Synchronous Buck Converter
- Older technology typically under 1MHz FSW
- Higher losses (external diode)

Fig.2 Synchronous Buck Converter

- Integrated rectification inside component package
- FSW typically ~1MHz or greater
- Higher FSW can make use of air-core inductor (< 1uH) which means the part can be used in magnetic field
- Lower rectifier losses
- All devices presented here are Synchronous Type

- Motivation to explore commercial parts (cost, performance, availability)
- Comparisons

Device (buck converter)	Vin (Vout = 1.2V)	Vout	lout (80% derated)	Eff.	FSW as tested	Package mm ²	Cost \$USD
LTC3626	20V	0.6–6V	2.0A	~85% as tested (2.3W)	1.8MHz	12	5.05 (500)
bPOL12V	*10V	0.6 – 5V	3.2A	70% data sheet 75% as tested at 2.0A (3W)	1.5MHz	25	15.00(36)

*Highest voltage recommended for SOA & stability

Device (buck controller)	Vin (Vout = 1.2V)	Vout	lout (as tested)	Eff.	FSW as tested	Package mm ²	Cost
LTC7890 External GaN FETs	12V can be increased if FSW is lowered	0.8 – 60V	Tested for 12A / channel (2 ch) operate 180° out to reduce EMI	~80 % tested 29W	2.0 MHz	36	4.01 (500)
bPOL48V External GaN driver/ FET	15V	0.6 – 24V	Tested at 8A	~78% tested 10W	1.5MHz	25	17.00(36)

Vin / Vout ratio & pulse switch time needs to be observed

Radiation testing criteria:

If commercial parts are tolerant of radiation environment after 10yr operation at full efficiency & machine luminosity...with 3x TID & fluence safety factor => COTS parts can be utilized

CERN bPOL12V & bPOL48V availability

Conversion Stage	Name	Asic Version	Vin	Iout	Technology	Radiation specs	Availability
Stage 1	bPOL48V	V 2	48V	10A	350nm CMOS with High Voltage extension at 80V	TID:50 Mrad SEE:46 MeV/(mg/cm²) DD:4e14 n/cm2 2.23e14 p/cm2(30MeV)	26k dies in 2022
Stage 2	bPOL12V	V6.1	12V	4 A	350nm CMOS with High Voltage extension at 25V	TID :150Mrad SEE :45 MeV/(mg/cm²) DD:4e15n/cm2 1.2e15p/cm2 (30MeV) 2.34e15p/cm2(200MeV)	6k dies in 2021 150k dies in 2022
	FEAST	V2.3	12V	4 A	350nm CMOS with High Voltage extension at 80V	TID :150Mrad DD:5e14n/cm2	Obsolete, production ended in 2020

(2.5A)

Example with CERN bPOL48V (10A)

SALSA ASIC, Sao Paulo University and CEA IRFU teams

Neutron Fluence & TID at ePIC

(1MeV equivalent) fluence normalized for 1 fb⁻¹ 100 x fb-1 = 1 year. Very conservatively, we can expect an upper bound of 100 fb-1/year at top luminosity => 1E9 x 100 x 10 Worse case (10 years of operation) at insert calorimeters: 1E12 n/sec cm² 3x safety factor: 3E12 n/sec cm²

Ionizing dose of <mark>1x10² x 100</mark> = 10kRads/ year x 10 years = 100kRads Safety factor of 3x => 300k rads

Slides 18-20 backup for proton testing at UC Davis

https://wiki.bnl.gov/EPIC/index.php?title=Radiation_Doses#Radiation_Doses_and_Fluences_from_10x275_GeV_e+p_minimum-bias_events

MORE RADIATION TESTING BEING DONE ON COMMERCIAL PARTS

bPOL48V Vout Vs TID @ 30°C

From bPOL48V data sheet

bPOL48V Vs LTC7890 topology difference

MPGD Neutron Fluence & TID simulations referenced from distance

MPGD layer locat	ions	Maximum EM Radiation dose [krads]	Maximum Hadron radiation dose [krads]	1 MeV neutrons equivalent fluence [cm ⁻²]	1 MeV protons equivalent fluence [cm ⁻²]
Barrel	R = 73 cm	0.3	0.1	2.8x 10 ¹⁰	4.2x 10 ⁹
	R = 55 cm	0.22	0.15	2.7x 10 ¹⁰	6.5x 10 ⁹
Hadron end cap	z = 148 cm	<mark>51.2</mark>	<mark>16.2</mark>	<mark>1.2x 10¹¹</mark>	<mark>2.3x 10¹¹</mark>
	z = 163 cm	<mark>52.6</mark>	<mark>14.1</mark>	1.1x 10 ¹¹	<mark>3.3x 10¹¹</mark>
Electron end cap	z = -112.5 cm	3.2	0.2	1.3x 10 ¹⁰	5.2x 10 ⁸
	z = -122.5 cm	4.2	0.2	1.4x 10 ¹⁰	8.0x 10 ⁹

TABLE1: e + p minimum-bias event @ 500 kHz event rate for 10 yrs EIC runs with 6 months run time/ yr and 100% efficiency

Layer	Distance cm	TID (k rads)	Fluence n/ sec / cm²
Barrel	R=73	1.2	8.4E10
Barrel	R=55	1.2	8.4E10
Hadron endcap	Z=148	200	3.6E11
Hadron endcap	Z=163	200	3.3E11
Electron endcap	Z=112.5	10.2	4.0E10
Electron endcap	Z=122.5	13.2	4.2E10

TABLE 2: 1meV n. equivalent fluence & TID from table 1With added 3x safety factor

Image from Sourav Tarafdar (Jlab), Vanderbilt U. 2023

https://indico.slac.stanford.edu/event/8288/contributions/7 884/attachments/3675/10024/CPAD_11_08_23.pdf

DC:DC converter selection based on rad tolerance & testing at UC Davis 64MeV proton facility

DC|DC performance testing bPOL48V (buck POINT OF LOAD) Vs LTC7890

bPOL48V w/ bottom mount heat-sink, 300nH @ 1.5MHz

LTC7890, 270nH @ 2.0MHz FSW

Vout Noise/ ripple ~3mV (1mV/div) h. 100us

Vout Noise/ ripple ~1.5mV (1mV/div) h.200ns

1.2V
8.2A
15V
12.75
10.0W
78.0 %
<0.3%
< 0.3 %
~60ns
1.5MHz

EMI (near field) 82.0mV p-p Measured from bottom of the PCB 50mv/div h.400ns

V _{OUT ch1, ch2}	1.2V, 1.2V
IOUT ch1, ch2	12A, 12A
V _{IN}	12V
P _{IN}	36W
Pout	28.8W
P _{EFF}	80.0%
Noise 1gHz	<0.3%
Ripple 25MHz	<0.3%
On-time	~60ns
Fsw	2.0MHz

EMI (near field) 118mV p-p Measured from bottom of the PCB

CERN bPOL12V testing

bPOL12V eval board mounted on test adapter carrier board

Test conditions:

V _{IN} =	10.00V
I _{IN} =	0.4A
V _{OUT} =	1.50V
I _{OUT} =	2.0A
P _{IN} =	4W, P _{OUT} = 3.0W
Noise &	Ripple < 0.4% (250MHz, 25MHz)

The measured efficiency with a switching frequency of 1.5MHz and 460nH inductor comes out to ~ %75.0%

Data sheet P_{EFFICENCY} table for 10Vin & 2.0A out ~75.0%

BPOL12V regulator temperature:

I measure ~34 deg C from the devices package (30 degC for inductor), which is not bad for dissipating almost 3.0W and considering the small area of copper plane on the module. Further improvements in efficiency might be possible by playing with the inductor size and switching frequency...

- More testing to do to optimize FSW and Efficiency
- PCB Layout for > 2.0A output current

CERN Radiation Testing for COTS Linear Regulators

Are presented only the devices tested in representative LHC radiation environments (i.e. CHARM)

Slide 25 from Rudy Ferraro (CERN CEM group), June 2023

https://indico.cern.ch/event/1295840/contributions/5446495/attachments/2667106/4668570/RADWG%20Voltage%20Regulator%20Final.pdf

Conclusions

- All tested parts should meet power + noise + efficiency performance specifications for FEBs & RDOs
- CERN bPOL parts will meet radiation requirements at ePIC
- More rad testing is needed for selected COTS parts (candidate parts have not been eliminated yet)
- A good deal of vetting has been done by CERN for radiation effects on linear COTS regulators

What's Next?

- Continue radiation studies for COTS DC:DC buck converters
- Build prototype power boards
- Power board design for fTOF EICROC FE ASIC Board
- Acceptance testing -

- Noise / Ripple
- Regulation
- Efficiency
- Temperature & thermal study
- Reliability & performance stress testing

Preliminary EICROC ASIC+RDO power board flow chart Optimized for efficiency

REFERENCES

SALAS ASIC: https://indico.cern.ch/event/1327482/contributions/5692916/attachments/2766588/4819103/SALSA_RD51_20231206.pdf

https://power-distribution.web.cern.ch/ASICS/

https://epc-co.com/epc/products/gan-fets-and-ics/epc2152

https://wiki.bnl.gov/EPIC/index.php?title=Radiation_Doses#Radiation_Doses_and_Fluences_from_10x275_GeV_e+p_minimum-bias_events

Non Ionizing Energy Loss

Neutron induced displacement damage in silicon

A. Akkerman et al. | Radiation Physics and Chemistry 62 (2001) 301-310

Ekin [MeV] P	D/(95MeVmb) Huhtinen
6.500E+01	1.580E+00
1.000E+00	3.133E+01

https://rd50.web.cern.ch/niel/protons.pdf

Ekin [MeV] <mark>N</mark>	D/(95MeVmb) Konobeyev			
6.000E+01	1.644E+00			
7.000E+01	1.499E+00			
6.500E+01	1.572+00 (1.644+1.499)/2 6.5 not listed so I avg 6.0E+1 & 7.0E+1			
1.050E+00	8.020E-01			
https://rd50.web.cern.ch/niel/neutrons.pdf				

Source: https://rd50.web.cern.ch/niel/

LTC7890 Output deviation under 64MeV proton beam

Slight instability (output deviation) observed only when beam is on (Faraday cup open)

Cyclotron configuration setup screen

ent File				Run Comment	
Riverside/UC-Riverside_	5-15-2024		-		
rent Setup		Pre-Run		This Run	
am Type: Proton		Electrometer Rang	e: 20 nA	Run Number:	3
am Energy: 64 Me	N	FC Leakage:	-7.6e-13 ± 2.48e-13	Device Name:	LTC3600
arget: Silicon	n	SEM Leakage:	1.33e-11 ± 1.17e-12	Run Goal:	6.6e+11 p/cm ²
E/dx (MeV·cm²/g): 8.334	4	FC/SEM Ratio:	1.9 ± 0.0088	Projected Time:	2.63e+03 s
tatistics					
lapsed Time (s):	210.640		Average Beam Current (A):	2.01e-09	
Beam Current (A):	2.01e-09 ± 1.14e-1	0	Accumulated Dose (Rad):	7.05e+03	
Run Dose (Rad):	7.05e+03		Accumulated Fluence (p/cm ²):	5.28e+10	
Run Fluence (p/cm ²):	5.28e+10		Arg Dose Rate (rad/s):	33.5	
Avg Beam Flux (p/cm²/s)	: 2.51e+08		Start Time of Last Run:	5/15/2024 10:18:	05
Run Progress					
				7% Paus	e Stop
Actions					
New File	Close Fil	e Ru	n Settings Rati	•	About
				Pup	Evit