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EPIC dRICH



Analysis of dRICH Output Bandwidth

Throughput Issue:
1. Develop a dedicated sub-detector 

tagging relevant interactions.
2. This proposal.





Data reduction on FPGA



dRICH Data Reduction Stage on FPGA

• Objective: design of a data reduction stage for the dRICH with a ~100 
data bandwidth reduction in DAM-I level output to DAM-II level input.  

• Make exclusive use of DAQ components (Felix DAMs)
• Add few DAM units wrt the bare minimum (i.e. 27 Felix) needed to readout the 

1248 RDO links to implement a distributed processing scheme.
• Integration with the dIT (or other detectors) to boost performance and enable 

other features.
• Online Signal/Noise discrimination using ML

•  Collecting datasets using data available from simulation campaigns
• Background: 

• e/p with beam pipe gas 
• Synchrotron radiation (MC only, it would be useful to have it reconstructed)

• Merged (i.e. the Signal): signal + e/p with beam pipe gas background (full)
• Few events, more statistics would be useful 

• SiPM Noise
• DCR modelled in the reconstruction stage
• More statistics of merged reconstructed events with noise would be useful



dRICH Data Reduction Stage on FPGA

• Online Signal/Noise discrimination using ML (continued)
• Study of Inference Models

• Restricting our study to inference models that can be deployed on FPGA 
with reasonable effort (using a High-Level Synthesis workflow)

• MLP, CNN, GNN NN Models (HLS4ML)
• BDT (Conifer)

• Inference throughput (98.5 MHz) is the main concern.
• HDL optimized implementation is an option.
• Not necessarily ML-based.

•Deployment on multiple Felix DAMs directly interconnected with 
the APE communication IP.



Some Background Activities
▪ INFN APE Lab @ Roma1/2: design and development of 4 generations of parallel 

computing architectures (mainly) dedicated to LQCD (1986-2010)
https://apegate.roma1.infn.it

▪ Two recent research activities are relevant for this presentation:
– FPGA-RICH: online ring counting system based on FPGA for the RICH detector of the 

NA62 experiment at CERN.
– APEIRON: a framework offering hardware and software support for the execution of  

real-time dataflow applications on a system composed by interconnected FPGAs. 

▪Other research activities of possible interest for the “GPU approach”:
-APENet: a high-throughput network interface card based on FPGA used in hybrid, 
GPU-accelerated clusters with a 3D toroidal mesh topology.
[http://doi.org/10.1088/1742-6596/898/8/082035]

-NaNet: a family of FPGA-based PCIe Network Interface Cards (with GPUDirect/RDMA 
capability) for High Energy Physics to bridge the front-end electronics and the software 
trigger computing nodes.
[https://doi.org/10.1088/1742-6596/1085/3/032022]

https://apegate.roma1.infn.it/
http://doi.org/10.1088/1742-6596/898/8/082035
https://doi.org/10.1088/1742-6596/1085/3/032022


The NA62 Ring Imaging Cherenkov detector (RICH)



Workflow for Neural Networks deployment on FPGA



Neural Network Model (actually one of them...)

• Encoding of the 1952 PMTs geometrical 
positions in the input layer.

LUT = 14%
Flip−Flop = 6%
DSP = 7%
BRAM = 3%
on Versal VCK190



ROC Curve, Throughput & Latency

Alessandro Lonardo – ACAT 2022  -12



Integration of the FPGA-RICH Pipeline



APEIRON: INFN Communication IP
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▪ INFN is developing the IPs implementing a direct network that allows 
low-latency data transfer between processing High Level Syntesis 
(C++) tasks deployed on the same FPGA (intra-node communication) 
and on different FPGAs (inter-node communication).

▪ Inter-node Latency < 1us  for packet sizes up to 1kB
(source and destination buffers in BRAM)



dRICH Data Reduction Stage on FPGA: example deployment
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APE Router



NN-II

O
U
T
B
U
F

Merger

APE Router

FSM

(…, DAM-I)

DAM-II
00

1

29

AXI-ST <256>

DAM-I 
links

AXI-ST <256>

Q00 Q20Q10 Q30 Q40 Q50
(..., dIT)

PCI-e
Core

 GTU

AXI-ST <1>

Input 6 x 5 x 16 FC1 96

FC2 48

FC3 16

Relu
Relu

Relu

Out (Signal or Bg) 1-bit

Relu

From Q
00

, Q
10

, …, Q
50

NN-II

dRICH Data Reduction Stage on FPGA: example deployment

Trigger 
Evaluation

Q00

Q51

DAM-I

.

.

.

Q52

Q53

Q54

1

DAM-II

GTU

GTU (…, IT)
42

42

42

42

42

.

.

.

100 GbE

Q50
42

.

.

.

GTU

GTU

GTU

GTU

GTU

GTU (trigger to DAM-I)

Sector 0

Sector 5



Current status and outlook
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• We have started collecting datasets and experimenting with 
inference models.

• Details of the final deployment will be affected by several factors
• Final selection on the inference model(s): BDT, MLP, CNN, GNN, …
• Net amount of FPGA resources available (discounting the “standard” DAQ 

firmware) in DAMs.
• Actual additional DAQ resources (DAMs, …) dedicated to the data 

reduction system. 
• Possible additional features

• Provide services (statistics) for the online monitoring. 
• Having track seeds information from the Interaction Tagger could enable 

more sophisticated features (e.g. Particle counting, Particle identification)

Background activities useful for the «GPU approach»,
see next slides…
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BACKUP SLIDES



The NA62 Experiment at CERN SPS



The NA62 Data Acquisition and Low Level Trigger



The NA62 Data Acquisition and Low Level Trigger



Smart Primitives: FPGA-RICH



Neural Network Sensitivity



Integration of the FPGA-RICH Pipeline



APEIRON: an overview
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▪ Goal: develop a framework offering hardware and software support for the execution of  
real-time dataflow applications on a system composed by interconnected FPGAs .

▪ Map the dataflow graph of the application on the distributed FPGA 
system and offers runtime support for the execution. 

▪ Allow users with no (or little) experience in hardware design tools, 
to develop their applications on such distributed 
FPGA-based platforms 
– Tasks are implemented in C++ using High Level Synthesis tools (Xilinx 

Vitis).
– Lightweight C++ communication API

• Non-blocking send()
• Blocking receive()

▪ APEIRON is based on Xilinx Vitis High Level Synthesis 
framework and on INFN Communication IP (APE Router)



APEIRON: the Node
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▪ Host Interface IP: Interface the FPGA logic with the host through the system bus.
– Xilinx XDMA PCIe Gen3
▪ Routing IP: Routing of intra-node and inter-node messages between processing tasks on 

FPGA. 
▪ Network IP: Network channels and Application-dependent I/O 

– APElink 40 Gbps 
– UDP/IP over 10 GbE
▪ Processing Tasks: user defined processing tasks (Xilinx Vitis HLS Kernels)

APEIRON node in a 3D Torus network topology

Communication IP



APEIRON: Communication Latency
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Inter-node LATENCY (orange line) < 1us  for packet sizes up to 1kB 
(source and destination buffers in BRAM)

Test modes
• Local-loop (red arrow)
• Local-trip (green arrows)
• Round-trip (blue arrows)
Test Configuration
• IP logic clock @ 200 MHz 
• 4 intranode ports
• 2 internode ports 
• 256-bit  datapath width
• 4 lanes inter-node channels 


