Path Towards Holistic Reconstruction: Intro and Context ePIC Collaboration Meeting 07.25.2024

Workfest Agenda

- 1) [8 9:45 am] Morning 1: Intro and Context
 - Flash updates from different categories of reconstruction
 - Frames forward-focused open discussion

2) [9:45 – 10 am] Coffee break

- 3) [10 am noon] Morning 2: Open Discussion
 - What do we need for truly *holistic* recnonstruction
 - What are the steps to get there?
 - [noon 1 pm] Lunch
 - [1 1:30 pm] Afternoon 1: The BELLE-II PID Experience

- 6) [1:30 2 pm] Afternoon 2: Overflow Discussion
 - Accommodate discussion from morning or BELLE-II
- 7) [2 3 pm] Afternoon 2: Electron-Finder Working Session I
 - Focused work session on the electron-finder
- 8) [3 3:15 pm] Coffee Break
- 9) [3:15 4:15 pm] Afternoon 3: Electron-Finder Working Session II
- 10) [4:15 4:30 pm] Afternoon 4: Closeout discussion

Introduction

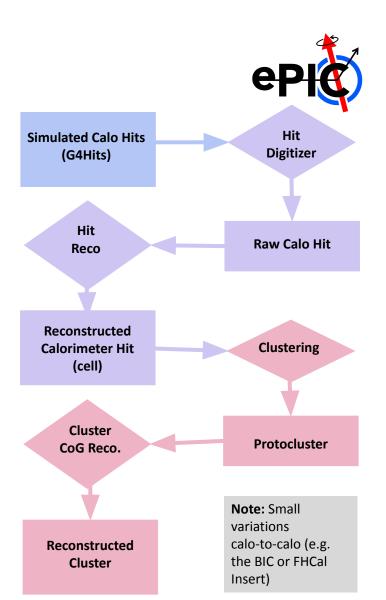
- S&C focus during 1st half of 2024 on priorities for (pre-) TDR identified at <u>January CM</u>
 - See <u>S&C report on Saturday [8:30 am]</u> for detailed discussion
- **Focus for today's discussion:** what do we need for truly *holistic* reconstruction?
 - What's missing? What are the steps to to get there?
- Today part of ongoing discussion for identifying priorities for remainder of year and beyond

- Previous discussions:
 - 07.09.2024 reco meeting
 - 07.17.2024 S&C meeting

Identified priorities in 2023

- Primary vertexing
- Electron finder
- Low-Q2 tagger
- Particle flow

All in ElCrecon with optimization in progress

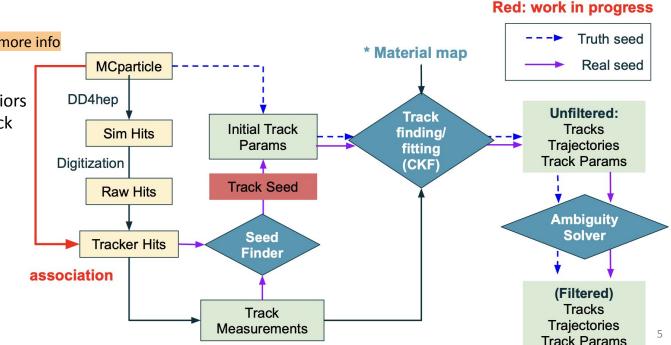

Identified priorities from CERN Workshop 2024

- Modularity of algorithms
- Use holistic information from various detector components in algorithms
 - Integration of FF/FB systems
- Web-based event display

So... What's in our reconstruction?

Reco Status | Calorimeter

- o Overall Status
 - Basic workflow in place
 - What's in place?
 - > All basic components (e.g. simple clustering)
 - What's missing?
 - > More system-specific reconstruction routines
- Workflow Inputs/Outputs:
 - Input: *Hits, e.g. EcalEndcapNHits
 - > (edm4hep::SimCalorimeterHit)
 - Output: *Clusters, e.g. EcalEndcapNClusters
 - > (edm4eic::Cluster)
- o Near Term Goals:
 - Track-based re-clustering
 - Proper truth-reconstructed cluster associations
- o Longer Term Goals:
 - System-specific digitization routines
 - Proper digitized-simulated hit associations



Derek A., ISU

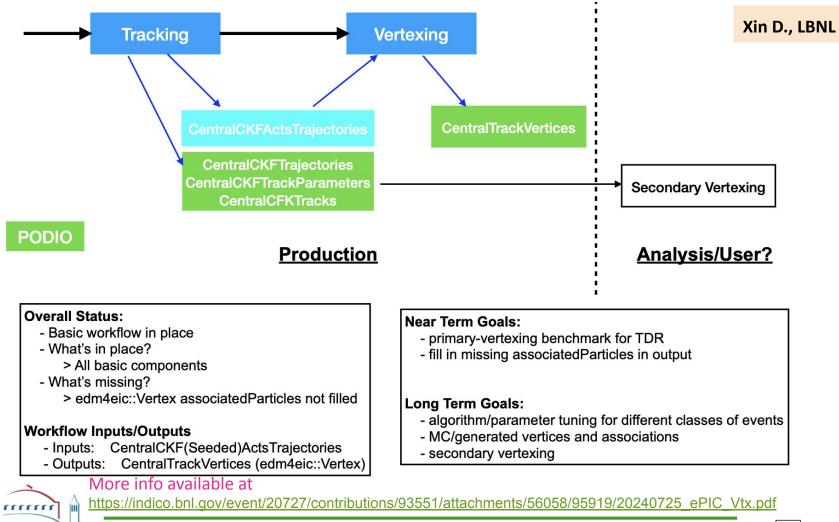
Reco Status | Tracking

Overall Status 0

- Basic workflow in place
- What's in place?
 - > tracking finding/fitting with space points
 - realistic seeding and ambiguity resolution
- What's missing?
 - Charge sharing and hits clusterization
 - Timing info

*see Barak's talk in general meeting for more info

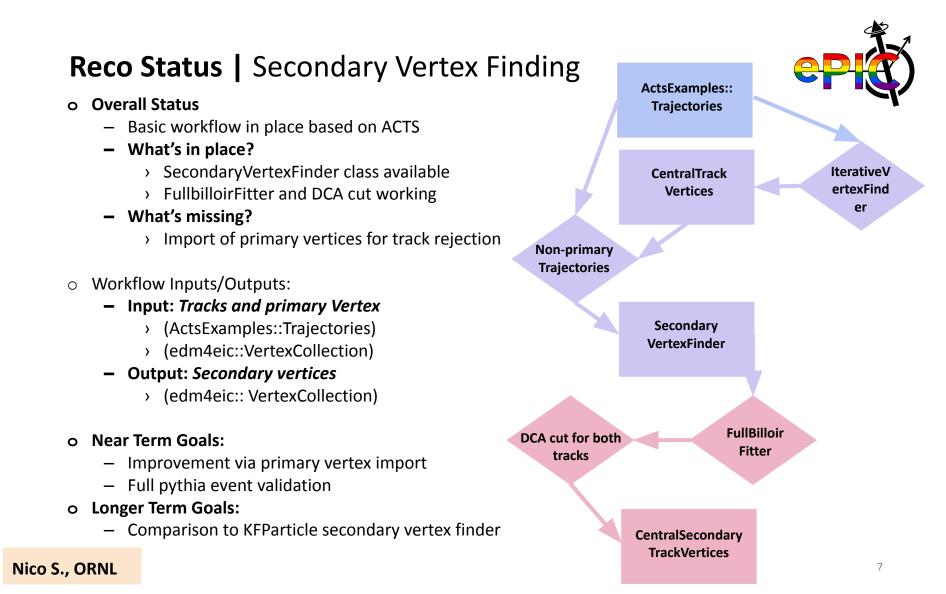
- Near Term Goals: 0
 - Understand tracking behaviors with hit-track and seed-track associations
 - Optimize algorithm performance
- o Longer Term Goals:

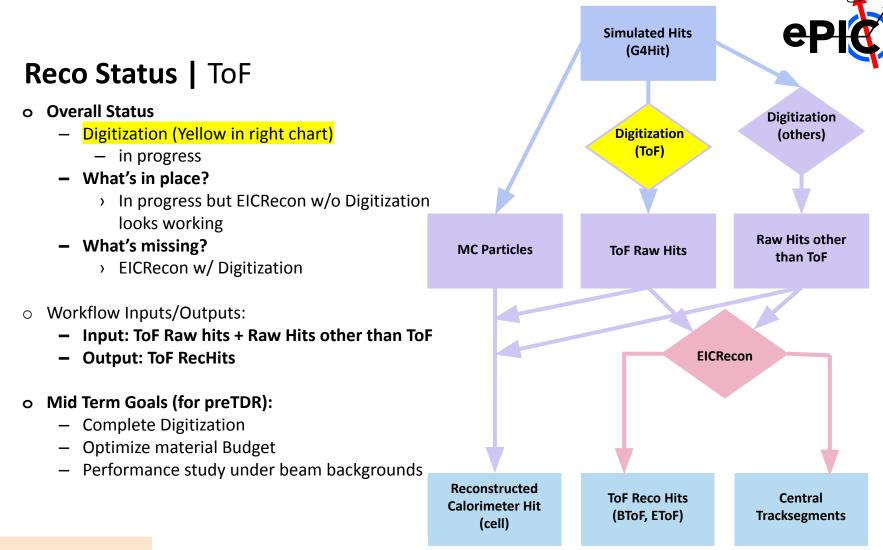

Shujie Li, Berkeley Lab

- Tracking with time frame
- Noise and clustering

- Workflow Inputs/Outputs: **Input:** **RecHits from silicon tracker, MPGD, TOF, B0*
 - CentralCKF(Seeded)Trajectories(Unfiltered) – Output: Tracks **TrackParameters**

Seed finder Can find multiple triplets from one track CKF allow track candidates split in track finding from one initial guess \Rightarrow use ambiguity solver to filter duplicates

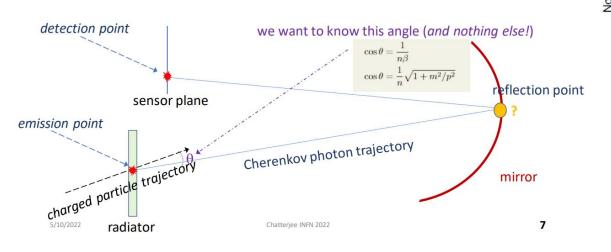

Tracking/Vertexing Workflow

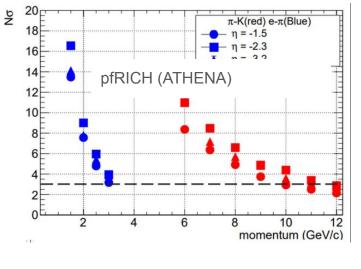


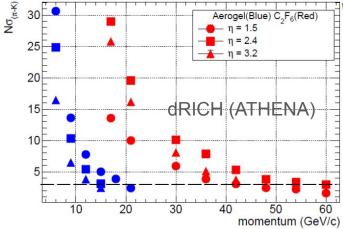
ePIC Collaboration Meeting, 07/24-07/28, 2024, Lehigh University

BERKELEY LAB

6

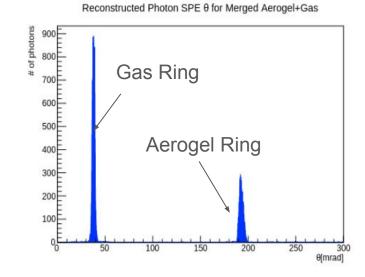


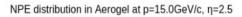


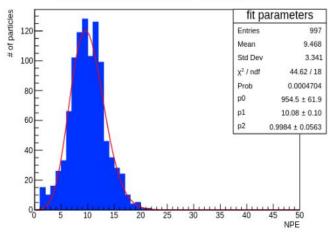

Kentaro K., Shinshu U.

Synergy between pfRICH and dRICH

- □ The RICH reconstruction software was started at the ATHENA times.
- The reconstruction is based on Inverse Ray Tracing (IRT).
- □ A baseline reconstruction algorithm.
- First version evaluate separation power for single particles and few more analysis. Mainly focused to detector optimization.

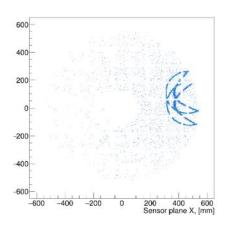


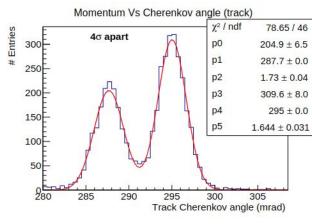


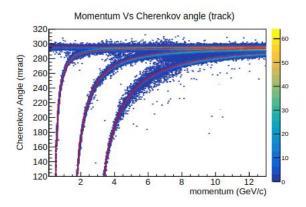

Chandra C., INFN

Situation with ePIC (dRICH)

- ATHENA IRT is ported to EICRECON (IRT-v1) and is used by dRICH.
- IRT-v1 works and all cross-checks have been made.
- IRT-v1 can handle SiPM noise with some tricks.
- IRT-v1 can even handle multi particle events given they are substantially far away.

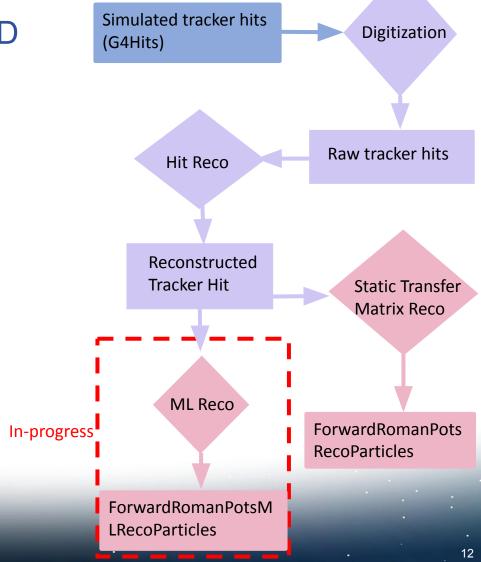





Chandra C., INFN

IRTv-2

- A second version of IRT has been developed during backward RICH review.
- A sophisticated chi-square based PID algorithm is used to handle much more complicated event topology.
- Tested thoroughly in a Standalone code.
- Kolja has made an effort to import the stand-alone code to EICRecon. Does not work out-of-the box. Requires, testing and step-by-step debugging.
- Alexander and Chandra plan to work on it. Will be used in both RICHes. Standalone code plots:


Reco Status | Roman pots/OMD

Overall Status

- Full reco with static transfer matrix exists and works. (<u>note</u>: special cases need to be considered, e.g. light nuclei).
- ML algorithm exists, integration with EICrecon in-progress.

• Workflow

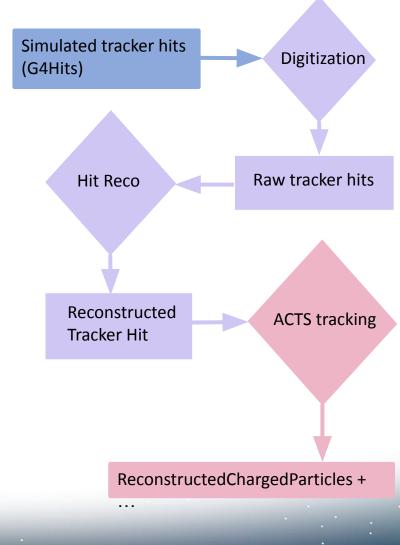
- Input(s): ForwardRomanPotsRecoHits
- Output(s):
 ForwardRomanPotsRecoParticles
 - (similar for Off-Momentum Detectors)
- <u>Near-Term goals</u>
 - Get ML algorithm fully-integrated.
 - Fix a few dangling issues for nuclei, and sorting of hits.
- Long-Term Goals
 - Replace static matrix code with dynamic (polynomial) matrix code.

Reco Status | B0 tracker

Overall Status

- Full reco has been tested, but with recent changes, correct output for ACTS tracking a bit unclear.
- B0 field map needs to be put into a PR and merged (see below).

<u>Workflow</u>

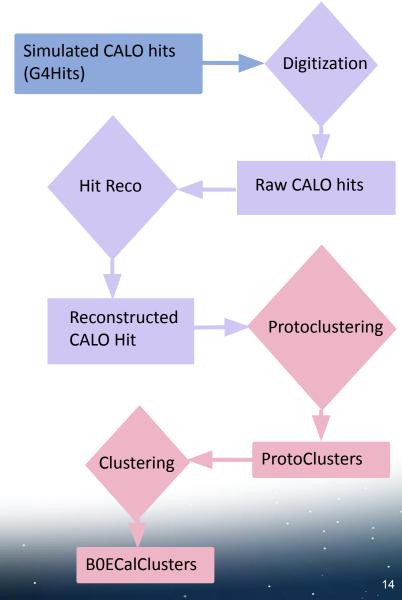

- Input(s): BOTrackerRecoHits
- Output(s): ReconstructedChargedParticles***

<u>Near-Term goals</u>

• Make PR for the B0 field map (on a private branch), and get it merged.

Long-Term Goals

 Include charge sharing digitization and change segmentation to correct value (currently set to a value to provide expected resolutions).

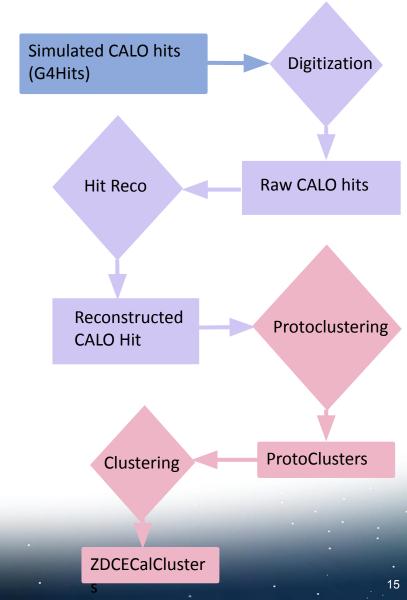

Reco Status | B0 EMCAL

Overall Status

• B0 EMCAL is a crystal EMCAL – uses components which already exist.

<u>Workflow</u>

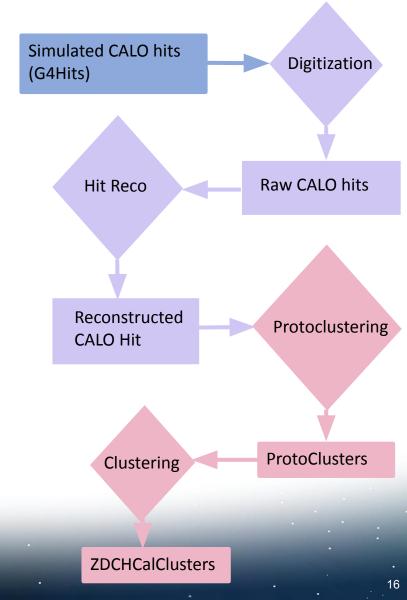
- Input(s): BOECalRecHits
- Output(s): B0ECalClusters
- <u>Near-Term goals</u>
 - TBD
- Long-Term Goals
 - Include any changes to digitization to reflect final choice of electronics (SiPM).



Reco Status | ZDC EMCAL

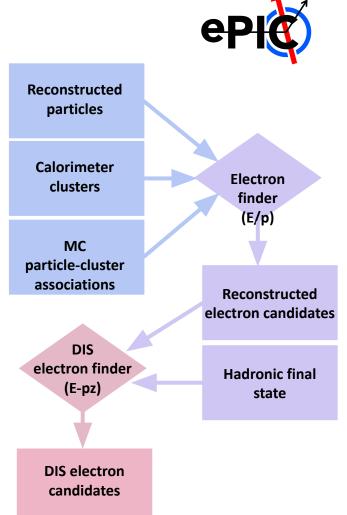
- Overall Status
 - ZDC EMCAL is a crystal EMCAL uses components which already exist.
- Workflow
 - Input(s): EcalFarForwardZDCHits
 - Output(s): EcalFarForwardZDCClusters
- <u>Near-Term goals</u>
 - TBD

Alex J., BNL


- Long-Term Goals
 - Include any changes to digitization to reflect final choice of electronics (SiPM, APD).
 - Work on integrated reconstruction for full ZDC (HCAL + EMCAL).

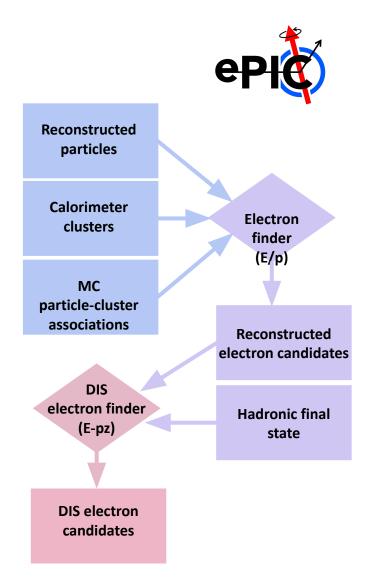
Reco Status | ZDC HCAL

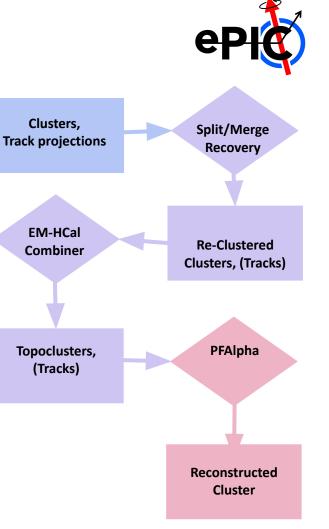
Overall Status


- ZDC HCAL is the same SiPM-on-Tile technology and reco as the HCAL insert
- Workflow
 - Input(s): HcalFarForwardZDCHits
 - Output(s): HcalFarForwardZDCClusters
- <u>Near-Term goals</u>
 - TBD
- Long-Term Goals
 - Work on integrated reconstruction for full ZDC (HCAL + EMCAL).

Electron ID + reconstruction status

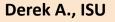
- o Overall Status
 - Basic workflow in place
 - What's in place?
 - All basic components
 - What's missing?
 - > Fully reconstruction-based matching/associations
 - eID parameters (E/p, E-pz) in output
 - > Calorimeter energy for electron reconstruction
- Workflow Inputs/Outputs: Ο
 - Input: Reconstructed particles, calorimeter clusters, cluster-particle associations (truth info)
 - (edm4eic::ReconstructedParticle)
 - (edm4eic::Cluster) >
 - (edm4eic::MCRecoClusterParticleAssociation)
 - Output: DIS electron candidates (subset of reconstructed particles)
 - (edm4eic::ReconstructedParticle)




Tyler K., MIT

Electron ID + reconstruction status

o Near Term Goals:


- Track-cluster matching
- Electron ID variables in output
 - New data type for electron candidates?
- Electron ID output feed back into reconstructed particle ID?
- Tune electron ID cuts
- Calorimeter clusters in electron energy reconstruction

Reco Status | Particle Flow

- o Overall Status
 - Work started, but on hold...
 - What's in place?
 - Truth-based track-EMCal matching (i.e. *MatchClusters* algorithm)
 - What's missing?
 - Non-truth based track-cluster matching
 - > Integration of HCal info
- PFAlpha Inputs/Outputs:
 - Input: Track projections, Clusters,
 - > (edm4eic::TrackSegment)
 - > (edm4eic::Cluster)
 - Output: Reconstructed particles
 - > (edm4eic::ReconstructedParticle)
- o Near Term Goals:
 - Finish implementation of PFAlpha
- o Longer Term Goals:
 - Refinement of PFAlpha using PID
 - Explore alternative algorithms vs. eta

Detector Info Integration

Electron-finder Particle flow Reconstructed(Charged)Particles

• • •

Link to mindmap

Backup

