## Covariant framework to parametrize realistic deuteron wave functions



- Original idea: a covariant and separable but non-local model of nucleon-nucleon interactions.
- Solve for deuteron from Bethe-Salpeter equation.
- Calculate deuteron observables in manifestly covariant way.
- Get generalized parton distributions that obey polynomiality.
- Modified idea: the formalism of the original idea can encode approximate parametrization of realistic wave functions.
- Get manifest covariance (and GPD polynomiality) with existing, precision wave functions!
- I use Argonne V18 as an example.
- I'll explain the original idea first, and then how I adapted the framework to get covariant results from AV18.
- Generalized parton distributions exhibit polynomiality.

$$
\int \mathrm{d} x x H_{1}(x, \xi, t)=\mathcal{G}_{1}(t)+\xi^{2} \mathcal{G}_{3}(t) \quad \text { etc. }
$$

- Required for unambiguous extraction of energy-momentum tensor from GPDs.
- Polynomiality requires covariance.
- X. Ji, J. Phys. G24 (1998) 1181
- Finite Fock expansion (standard method) violates covariance.
- Example: landmark calculation of Cano and Pire EPJA 19 (2004) 423



## - Adapted from non-local NJL model.

- Bowler \& Birse, Nucl. Phys. A582 (1995) 655
- Modified to be a nucleon-nucleon interaction.
- $V$ and $T$ currents in isosinglet channel:

$$
\begin{aligned}
B_{V}^{\mu}(x) & =\frac{1}{2} \int \mathrm{~d}^{4} z f(z) \psi^{\top}\left(z+\frac{z}{2}\right) C^{-1} \tau_{2} \gamma^{\mu} \psi\left(z-\frac{z}{2}\right) \\
B_{T}^{\mu \nu}(x) & =\frac{1}{2} \int \mathrm{~d}^{4} z f(z) \psi^{\top}\left(z+\frac{z}{2}\right) C^{-1} \tau_{2} \mathrm{i} \sigma^{\mu \nu} \psi\left(z-\frac{z}{2}\right)
\end{aligned}
$$

- $f(z)$ a spacetime form-factor; regulates UV divergences.
- $C$ is charge conjugation matrix.
- $\tau_{2}$ isospin matrix.
- Interaction Lagrangian:

$$
\mathscr{L}_{I}=g_{V} B_{V}^{\mu}\left(B_{V \mu}\right)^{*}+\frac{1}{2} g_{T} B_{T}^{\mu \nu}\left(B_{T \mu \nu}\right)^{*}
$$

- Momentum-space Feynman rule for interactions:

- Separable interaction: initial \& final momentum dependence factorize.
- (isospin dependence suppressed to compactify formula)
- $\widetilde{f}(k)$ is Fourier transform of $f(z)$, chosen:

$$
\widetilde{f}(k) \equiv \frac{\Lambda}{k^{2}-\Lambda^{2}+\mathrm{i} 0}
$$

- $\Lambda$ is the regulator scale (non-locality scale).
- Kernel encodes channels with multiple quantum numbers:

- $p$ is center-of-mass momentum (deuteron momentum)
- Need only structures with deuteron quantum numbers:

$$
\gamma_{V}^{\mu} \equiv \gamma^{\mu}-\frac{\not p p^{\mu}}{p^{2}} \quad \gamma_{T}^{\mu} \equiv \frac{\mathrm{i} \sigma_{\mu p}}{\sqrt{p^{2}}}
$$

- Other structures fully decouple in the T-matrix equation!
- Bubble diagrams defined via:

$$
-\mathrm{i}\left(g^{\mu \nu}-\frac{p^{\mu} p^{\nu}}{p^{2}}\right) \Pi_{X Y}\left(p^{2}\right)=Y
$$

- Either $\gamma_{V}^{\mu}$ or $\gamma_{T}^{\mu}$ can be on either end.
- The regulator $\widetilde{f}(k)$ appears twice inside loop integral—makes it UV finite.
- Can define bubble matrix:

$$
\Pi=\left[\begin{array}{cc}
\Pi_{V V}\left(p^{2}\right) & \Pi_{V T}\left(p^{2}\right) \\
\Pi_{T V}\left(p^{2}\right) & \Pi_{T T}\left(p^{2}\right)
\end{array}\right]
$$

- Essential ingredient in calculations to follow.
- Bethe-Salpeter equation (BSE) for T-matrix given by:

- Separability of interaction permits a simple matrix form:

$$
T=G-G \Pi T
$$

- Actual T-matrix related to simplified matrix via:

$$
\mathcal{T}\left(p, k, k^{\prime}\right)=\frac{\Lambda}{k^{2}-\Lambda^{2}} \frac{\Lambda}{k^{\prime 2}-\Lambda^{2}}\left\{T_{11} \gamma_{V} \otimes \gamma_{V}+T_{12} \gamma_{V} \otimes \gamma_{T}+T_{21} \gamma_{T} \otimes \gamma_{V}+T_{22} \gamma_{T} \otimes \gamma_{T}\right\}
$$

- Simplified kernel matrix:

$$
G=\left[\begin{array}{cc}
g_{V} & 0 \\
0 & g_{T}
\end{array}\right]
$$

- T-matrix solution given by:

$$
T=(1+G \Pi)^{-1} G
$$

- Deuteron bound state pole exists where:

$$
\operatorname{det}(1+G \Pi)=0
$$

- Use physical deuteron mass to fix $g_{V}$ in terms of $\Lambda$ and $g_{T}$.
- Residues at this pole give reduced form of deuteron vertex:

$$
T\left(p^{2} \approx M_{\mathrm{D}}^{2}\right) \approx-\frac{1}{p^{2}-M_{\mathrm{D}}^{2}}\left[\begin{array}{ll}
\alpha^{2} & \alpha \beta \\
\alpha \beta & \beta^{2}
\end{array}\right]
$$

- $\alpha$ and $\beta$ are coefficients in deuteron Bethe-Salpeter vertex.
- The $k$ and $k^{\prime}$ dependence is fixed and separable.
- The result of all this is a deuteron Bethe-Salpeter vertex:

$$
\Gamma_{\mathrm{D}}^{\mu}(p, k)=\frac{\Lambda}{k^{2}-\Lambda^{2}+\mathrm{i} 0}\left\{\alpha \gamma_{V}^{\mu}+\beta \gamma_{T}^{\mu}\right\} C \tau_{2}
$$

- Simple $k$ dependence fixed by separable interaction.
- Can be used to covariantly calculate all sorts of observables.
- Relationship to fundamental model parameters:

$$
\left(\Lambda, g_{V}, g_{T}\right) \rightarrow\left(M_{\mathrm{D}}, \alpha, \beta\right)
$$

- Eliminate one model parameter by fixing $M_{\mathrm{D}}$ to empirical value.
- Could fix other parameters via observables, e.g., charge radius \& quadrupole moment.
- A curious thing happens if we look at the non-relativistic limit ...
- Non-relativistic, momentum-space wave function:

$$
\psi_{\mathrm{NR}}(\boldsymbol{k}, \lambda) \sim \frac{-1}{\sqrt{8 M_{\mathrm{D}}}} \frac{\bar{u}\left(\boldsymbol{k}, s_{1}\right)\left(\Gamma_{\mathrm{D}} \cdot \varepsilon_{\lambda}\right) \bar{u}^{\top}\left(-\boldsymbol{k}, s_{2}\right)}{\boldsymbol{k}^{2}+m \epsilon_{\mathrm{D}}}
$$

- Working out the Dirac matrix algebra and using the limit $\boldsymbol{k}^{2} \ll m^{2}$ will give:

$$
\begin{aligned}
& \psi_{\mathrm{NR}}(\boldsymbol{k}, \lambda)=4 \pi\left\{u(k) Y_{101}^{\lambda}(\hat{k})+w(k) Y_{121}^{\lambda}(\hat{k})\right\} \\
& u(k)=\sum_{j=0}^{1} \frac{C_{j}}{\boldsymbol{k}^{2}+B_{j}^{2}} \\
& w(k)=\sum_{j=0}^{1} \frac{D_{j}}{\boldsymbol{k}^{2}+B_{j}^{2}} \\
& B_{0}=\sqrt{m \epsilon_{\mathrm{D}}} \\
& B_{1}=\Lambda
\end{aligned}
$$

$$
\begin{aligned}
& C_{0}=\frac{m}{\sqrt{4 \pi M_{\mathrm{D}}}} \frac{\Lambda}{\Lambda^{2}-\epsilon_{\mathrm{D}} m}\left(\alpha+\beta-\frac{(\alpha-\beta) \epsilon_{\mathrm{D}} m}{12 m^{2}}\right) \\
& C_{1}=-\frac{m}{\sqrt{4 \pi M_{\mathrm{D}}}} \frac{\Lambda}{\Lambda^{2}-\epsilon_{\mathrm{D}} m}\left(\alpha+\beta-\frac{(\alpha-\beta) \Lambda^{2}}{12 m^{2}}\right) \\
& D_{0}=-\frac{m}{\sqrt{4 \pi M_{\mathrm{D}}}} \frac{\Lambda}{\Lambda^{2}-\epsilon_{\mathrm{D}} m} \frac{\sqrt{2}(\alpha-\beta) \epsilon_{\mathrm{D} m}}{6 m^{2}} \\
& D_{1}=\frac{m}{\sqrt{4 \pi M_{\mathrm{D}}}} \frac{\Lambda}{\Lambda^{2}-\epsilon_{\mathrm{D}} m} \frac{\sqrt{2}(\alpha-\beta) \Lambda^{2}}{6 m^{2}}
\end{aligned}
$$

- $u(k)$ is S-wave, $w(k)$ is D-wave.
- The curious thing is that this is a standard parametrization for deuteron wave functions!

$$
u(k)=\sum_{j=0}^{N} \frac{C_{j}}{\boldsymbol{k}^{2}+B_{j}^{2}} \quad w(k)=\sum_{j=0}^{N} \frac{D_{j}}{\boldsymbol{k}^{2}+B_{j}^{2}}
$$

- First used by Paris group, Lacombe et al., PLB 101 (1981) 139
- Typically $N>1$ of course.
- One requires $B_{0}=\sqrt{\epsilon_{\mathrm{D}} m}$ to get the right asymptotic behavior. (Check!)
- One also requires the following sum rules for correct behavior at the origin:

$$
\sum_{j=0}^{N} C_{j}=\sum_{j=0}^{N} D_{j}=\sum_{j=0}^{N} D_{j} B_{j}^{-2}=\sum_{j=0}^{N} D_{j} B_{j}^{2}=0
$$

- Model as given fails unless $\alpha=\beta$, meaning no D wave.
- But we can fix this by having $N$ copies of the separable kernel!
- Just have $N$ copies of the original separable interaction with different $\Lambda_{n}$ :

$$
\mathcal{K}\left(k, k^{\prime}\right)=\sum_{n=1}^{N} \frac{\Lambda_{n}}{k^{2}-\Lambda_{n}^{2}+\mathrm{i} 0} \frac{\Lambda_{n}}{k^{\prime 2}-\Lambda_{n}^{2}+\mathrm{i} 0}\left\{g_{V n} \gamma^{\mu} C \otimes C^{-1} \gamma_{\mu}+\frac{g_{T n}}{2} \sigma^{\mu \nu} C \otimes C^{-1} \sigma_{\mu \nu}\right\}
$$

- Kernel now has $3 N$ parameters: $\left\{\Lambda_{n}, g_{V n}, g_{T n} \mid n \in\{1, \ldots, N\}\right\}$.
- Simplified forms of kernel, T-matrix, and bubble are now all $2 N \times 2 N$ matrices.
- The different $\Lambda_{n}$ mix, but the T-matrix equation is still separable and can be solved algebraically.
- Deuteron vertex is now:

$$
\Gamma_{\mathrm{D}}^{\mu}(p, k)=\sum_{n=1}^{N} \frac{\Lambda_{n}}{k^{2}-\Lambda_{n}^{2}+\mathrm{i} 0}\left\{\alpha_{n} \gamma_{V}^{\mu}+\beta_{n} \gamma_{T}^{\mu}\right\} C \tau_{2}
$$

- Non-relativistic reduction now has $N+1$ terms in S and D waves!
- The popular non-relativistic parametrization is:

$$
u(k)=\sum_{j=0}^{N} \frac{C_{j}}{\boldsymbol{k}^{2}+B_{j}^{2}} \quad w(k)=\sum_{j=0}^{N} \frac{D_{j}}{\boldsymbol{k}^{2}+B_{j}^{2}}
$$

- Here $B_{0}=\sqrt{\epsilon_{\mathrm{D}} m}$ and $B_{n}=\Lambda_{n}($ for $n>0)$.
- From the kernel coupling strengths:

$$
\left\{g_{V n}\right\},\left\{g_{T n}\right\} \rightarrow\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\} \rightarrow\left\{C_{j}\right\},\left\{D_{j}\right\}
$$

- Won't fill up a slide with all the formulas (see preprint when it comes out).
- The formulas are linear \& invertible!

$$
\left\{C_{j}\right\},\left\{D_{j}\right\} \rightarrow\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\} \rightarrow\left\{g_{V n}\right\},\left\{g_{T n}\right\}
$$

- So why not start with the $C_{j}, D_{j}$ and $B_{j}$ from a well-established wave function?
- Automatically get precision of established wave function.
- Get correct constraints by starting with $\left\{B_{j}, C_{j}, D_{j}\right\}$ that obey them.
- Guaranteed Lorentz covariance from using separable framework.
- Example: Argonne V18 fit using $N=7$.
- Get $u(k)$ and $w(k)$ from ANL website*.
- $B_{n}(n>0)$ were allowed to float in fit.
- $B_{0}=\sqrt{\epsilon_{\mathrm{D}} m}$.
- $r \rightarrow 0$ constraints were enforced.
- From $\left\{B_{j}, C_{j}, D_{j}\right\}$ get $\left\{\Lambda_{n}, g_{V n}, g_{T, n}\right\}$.
- See future preprint for numerical values!

- Now have covariant Lagrangian that reproduces AV18 wave function in NR limit!
*: https://www.phy.anl.gov/theory/research/av18/
- Electromagnetic form factors (obtained!)
- Gravitational form factors (in progress)
- Manifest covariance helpful here.
- Previous non-covariant work (AF \& Cosyn, PRD) found inconsistencies in EMT components.
- Collinear parton distributions (obtained!)
- $b_{1}$ structure function (obtained!)
- Generalized parton distributions (in progress)
- GPDs are the main goal of this project.
- Existing deuteron GPDs violate polynomiality.
- Manifest covariance of this framework guarantees polynomiality.
- Sum of triangle and bicycle diagrams

- Bicycle diagram comes from gauge invariance.
- Non-local interaction requires Wilson lines.
- Diagrams can be evaluated exactly within the present framework!
- Symbolic algebra program needed though—results are long (hundreds of lines of generated Fortran code)
- Results are covariant too.







- Full (AV18)
---- Triangle diagram only
-- NRIA
- Vast improvement over non-relativistic impulse approximation (NRIA)!
- Despite same NR limit.
- Likely just form relativistic kinematics.
- Bicycle diagram makes negligible contribution.
- Reasonable description of data-sanity check passed for framework!
- Good agreement with elastic structure functions


- Static moments a bit large ...

| Charge radius | 2.156 fm | 2.12799 fm |
| :---: | :---: | :---: |
| Magnetic moment | $0.876 \mu_{N}$ | $0.8574382284 \mu_{N}$ |
| Quadrupole moment | $0.301 \mathrm{fm}^{2}$ | $0.2859 \mathrm{fm}^{2}$ |

- Sum of convolution and interaction diagrams:

- Diagrams evaluated in the Bjorken limit:

- Here $0<x_{d}<1$, in contrast to usual normalization.
- $0<x_{\mathrm{Bj}}=\frac{M_{d}}{m_{N}} x_{d}<\frac{M_{d}}{m_{N}} \approx 2$ is the usual variable.
- $x_{d}$ is easier to use in calculations.
- Compare empirical data in terms of $x_{\mathrm{Bj}}$.
- Effective triangle diagram (Bjorken limit):

- Convolution formula results:

$$
H_{i}\left(x_{d}, \xi, t, Q^{2} ; \lambda\right)=\sum_{N=p, n} \int_{-1}^{1} \frac{\mathrm{~d} y}{|y|}\left[h_{i}(y, \xi, t ; \lambda) H_{N}\left(\frac{x_{d}}{y}, \frac{\xi}{y}, t, Q^{2}\right)\right.
$$

- Forward limit $(t \rightarrow 0)$ gives standard PDF convolution:

$$
\left.+e_{i}(y, \xi, t ; \lambda) E_{N}\left(\frac{x_{d}}{y}, \frac{\xi}{y}, t, Q^{2}\right)\right]
$$

$$
q_{d}\left(x_{d}, Q^{2} ; \lambda\right)=\sum_{N=p, n} \int_{x_{d}}^{1} \frac{\mathrm{~d} y}{y} f(y ; \lambda) q_{N}\left(\frac{x_{d}}{y}, Q^{2}\right)
$$

- Light cone density: a PDF assuming pointlike nucleons.

- Nucleon sum rule obeyed:

$$
\sum_{N=p, n} \int_{0}^{1} \mathrm{~d} y f(y ; \lambda)=2
$$

- Momentum sum rule violated!

$$
\sum_{N=p, n} \int_{0}^{1} \mathrm{~d} y y f(y ; \lambda)= \begin{cases}1.0036 & : \\ 0.9984 & : \\ & \lambda= \pm 1 \\ \end{cases}
$$



- Interaction carries momentum
- Effective bicycle diagram (Bjorken limit):

- New Feynman rule for operator insertion:

$$
\underbrace{j, k_{1}}_{j^{\prime}, k_{4}}=-\frac{1}{2} \sum_{X} g_{X} \mathcal{S}\left\{\tilde{h}_{X}^{+}\left(k, k_{3}\right)\left(\delta\left(x p^{+}-k_{1}^{+}\right)+\delta\left(x p^{+}-k_{2}^{+}\right)\right) \tilde{f}_{X}\left(k^{\prime}\right)\right.
$$

$$
\left.-\widetilde{f}_{X}(k) \widetilde{h}_{X}^{+}\left(k^{\prime}, 0\right)\left(\delta\left(x p^{+}-k_{3}^{+}\right)+\delta\left(x p^{+}-k_{4}^{+}\right)\right)\right\}\left(\gamma_{X}^{\nu} C \tau_{2}\right)_{i^{\prime} j^{\prime}}\left(C^{-1} \tau_{2} \bar{\gamma}_{X \nu}\right)_{i j}
$$

- ...assuming pointlike nucleon.
- Use convolution formula to fold in $N N$ vertex structure???
- Mellin moment of non-local correlator:

$$
\int \mathrm{d} x_{d} x_{d}^{s-1} \bar{q}\left(-\frac{z^{-}}{2}\right) \frac{\gamma^{+}}{2} q\left(\frac{z^{-}}{2}\right)=\frac{1}{\left(2 p^{+}\right)^{s}} \bar{q}(0) \gamma^{+}\left(\mathrm{i}^{+}\right)^{s-1} q(0)
$$

- Quark interaction with (entirely hypothetical) spin-s gauge field.
- Operator inserted on the $N N$ kernel.
- How does the non-local kernel interact with a spin- $s$ gauge field?
- Got the photon insertion rule from a gauge link.
- Assert invariance under spin-s gauge transforms.
- Spin-s gauge link???
- Higher-spin gauge fields transform like

$$
\delta h_{\mu_{1} \mu_{2} \ldots \mu_{s}}(x)=\partial_{\mu_{1}} \xi_{\mu_{2} \ldots \mu_{s}}(x)+\partial_{\mu_{2}} \xi_{\mu_{1} \ldots \mu_{s}}(x)+\ldots+\partial_{\mu_{s}} \xi_{\mu_{1} \ldots \mu_{s-1}}(x)
$$

with $\xi_{\mu_{1} \ldots}(x)$ totally symmetric.

- Fronsdal, PRD (1978); de Wit \& Freedman, PRD (1980)
- Not compatible with Poincaré symmetry (Coleman \& Mandula, Phys. Rev. (1967))
- My guess for gauge link (would love a proper derivation!):

$$
\psi(x+y) \rightarrow \exp \left\{\mathrm{i} \int_{x}^{x+y} \mathrm{~d} z^{\mu_{1}} h_{\mu_{1} \ldots \mu_{s}}(z) \mathrm{i} \partial^{\mu_{2}} \ldots \mathrm{i} \partial^{\mu_{s}}\right\} \psi(x+y)
$$

- Gives EM case for $s=1$.
- Gives linearized gravity case for $s=2$ (Green, PRD (2008); S. Wikeley's PhD thesis).
- Resulting Feynman rule:

$$
\prod_{j, k_{1}}^{\left.\sum_{-\tilde{f}_{X}}(k) \widetilde{h}_{X}^{\mu_{1}}\left(k^{\prime}, \Delta\right)\left(k_{3}^{\mu_{2}} k_{3}^{\mu_{3}} \ldots k_{3}^{\mu_{s}}+k_{4}^{\mu_{2}} k_{4}^{\mu_{3}} \ldots k_{4}^{\mu_{s}}\right)\right\}\left(\gamma_{X}^{\nu} C \tau_{2}\right)_{i^{\prime} j^{\prime}}\left(C^{-1} \tau_{2} \bar{\gamma}_{X \nu}\right)_{i j}}
$$

- Inverse Mellin transform of $++\ldots$ component gives rule from two slides ago.

- Momentum sum rule obeyed.
- Saved by the bicycle diagram!
- Also makes LCD symmetric.

$$
f_{U}(y)=\frac{f(y, 0)+f(y,+1)+f(y,-1)}{3}
$$

- Slight negative support.
- Either a flaw with the framework ...

$$
f_{T}(y)=f(y, 0)-\frac{f(y,+1)+f(y,-1)}{2}
$$

- ...or a feature of renormalization? cf. Collins, Rogers \& Sato, PRD (2022)
- Deuteron PDFs via convolution:

$$
q_{d}\left(x_{d}, Q^{2} ; \lambda\right)=\sum_{N=p, n} \int_{x_{d}}^{1} \frac{\mathrm{~d} y}{y} q_{N}\left(\frac{x_{d}}{y}, Q^{2}\right) f(y ; \lambda)
$$

- Use JAM PDFs for nucleon.
- C. Cocuzza et al., PRD106 (2022) L031502
- Same PDF for triangle \& bicycle diagrams.

- Plot in terms of

$$
x=x_{\mathrm{Bj}} \equiv \frac{Q^{2}}{2 m_{N} \nu}=\frac{M_{d}}{m_{N}} x_{d} \approx 2 x_{d}
$$

- This is the standard $x$ variable.

- Use free nucleon PDFs inside both triangle \& bicycle diagrams.
- Use JAM22 PDFs.
- Unpolarized $F_{2 D}\left(x_{\mathrm{Bj}}, Q^{2}\right)$ structure function.
- Looks reasonable.
- But no EMC effect when using free PDFs.
- Tensor-polarized $b_{1 d}\left(x_{\mathrm{Bj}}, Q^{2}\right)$ structure function looks standard.
- Total (blue curve) looks similar to Cosyn \&al., PRD (2017).
- Can't explain HERMES $b_{1}$ data.
- 2005 HERMES data at low $Q^{2}$.
- From 0.51-4.69 GeV².
- Lower $x$ points at lower $Q^{2}$.
- PRL 95 (2005) 242001
- Partonic picture may not be valid for low-x data here.
- So, maybe fold in Bodek parametrization of nucleon structure functions?
- Includes resonances at low $Q^{2}$.
- Bodek et al., PRD (1979)
- Something surprising happens when I do this...

- Nucleon $F_{1}$ at $Q^{2}=2.5 \mathrm{GeV}^{2}$.
- Bodek et al., PRD (1979)
- Model was not fit to these data.
- Parameters fixed on slide 15.
- I'm actually surprised by this result!
- Seems too good to be true?
- Cosyn (PRD (2017)) don't see this.
- Model $f_{T}(y)$ responsible?
- Maybe due to negative support?
- Specifically needs Bodek $F_{1}$.
- Using PDFs doesn't work.
- Found no code errors yet.
- Result is preliminary and subject to double-checking!
- Presented a framework for covariant calculations using realistic deuteron wave functions.
- Used Argonne's AV18 wave function as an example.
- Covariance means GPDs will obey polynomiality.
- Reproduced known deuteron properties in this framework
- Necessary sanity check.
- Learned an important lesson: bicycle diagrams must be accounted for!
- Maybe able to explain HERMES $b_{1}\left(x, Q^{2}\right)$ data.
- I'm double-checking the result though.
- Much more to be done:
- Energy momentum tensor and gravitational form factors.
- Generalized parton distributions (the main purpose of this project!)

