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Femtography of the nucleon
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Femtography - is data driven 
visualizations of the phase 
space (momentum and spatial) 
distribution of the quarks and 
gluons inside of the proton using 
a variety of deeply virtual 
exclusive processes.

Image credit: Rafael Dupre
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Spin as an emergent phenomena of QCD dynamics

The naive parton model cannot 
explain the origin of hadronic 
properties such as spin.

Orbital motion (dynamics) of 
the quarks and gluons could 
be the answer. 

How do we describe orbital angular momentum of partons?
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Generalized Parton Distributions

It was shown that the quantum correlation functions (phase space distributions) 
that can describe the consequences of orbital dynamics of partons in the nucleon 
are the 3D generalized parton distributions (GPDs).

X. Ji PRL. 78 (1997)
A. Radyushkin PRD. 56 (1997)

D. Muller, et. al. (1994)
M. Diehl Phys.Rep. (2003)

New 
information 
on parton 
dynamics!

Image credit: A. Rajan, M. Engelhardt, S. Liuti PRD 98 (2018)
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What are the possibilities?

Energy Density

Momentum Density

Pressure Distribution

Shear Forces

-

There is a connection between GPDs and the EMT of 
QCD, meaning GPDs can describe the total angular 
momentum.

Through Fourier transform of the momentum 
transfer, we have access to the spatial 
distribution of the partons in the hadron.

M. Burkardt PRD. 62 (2000)
M. Burkardt Int.J.Mod.Phys.A 18 (2003)

X. Ji, W. Melnitchouk, X. Song PRD 56 (1997)
X. Ji, PRD. 55 (1997)

Spatial Densities
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How to measure GPDs? Deeply virtual Compton scattering

+

2

B.Kriesten, S.Liuti, et. al. PRD. 101 (2020)

+ +
DVCS is parameterized by 
generalized parton distributions and 
is also accompanied by various 
background processes.

DVCS BH

Gluon Transversity Higher Twist

X. Ji, PRD. 55 (1997)

Important, but reserved for later …
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However … there’s a catch!

In the DVCS cross section, GPDs come 
convoluted with Wilson coefficient 
functions (Compton Form Factors) 
meaning we only have experimental 
access to integrals (ReCFF) or specific 
points in x (ImCFF) of these 
distributions.

factorization

Not the same integral for angular momentum!
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What does the DVCS cross section look like?

The cross section has three components that contribute to leading order

No CFFs

Linear CFFs: 3

Quadratic CFFs: 8

Very complicated to disentangle all of the various pieces!



11

So … it’s a really difficult problem!

There are many levels of abstraction going from experimental cross sections to 
calculating the physical properties of the hadron.

Cross
Section

Data

Compton
Form

Factors

Generalized
Parton

Distributions

Physical 
Properties 

and Imaging

Extraction Deconvolution Calculation

I believe we can exploit machine learning techniques to give more information 
than a model.
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There are many more constraints on GPDs

Physics Constraints

● Polynomiality property (lattice QCD data)

● Positivity constraints

● Forward limit constraints of GPDs from PDFs

● Dispersion relations with threshold effects 
between CFFs

● Evolution constraints at the perturbative 
scale
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Can we tell the difference in the data?

So it’s MUCH more than just a 
deconvolution problem! How much 
information of the GPD is retained 
in the cross section measurement?

M. Defurne et al., Phys. Rev. C92, 055202 (2015)
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Exclusive 
Scattering 

Data

CFF 
Extraction

GPD 
Modelling

Hadron 
Structure

Exclusive 
scattering theory

Lattice QCD 
calculations

Higher twist and 
beyond the 
standard model 
interactions

Physics 
uncertainties

Global Analysis 
Framework

Physics Informed Deep Learning

Architecture milestones

Strategic applications of ML techniques in four phases as a framework to pass 
from cross section data to the physical properties of interest.

Step 2Step 1 Step 3 Step 4

Machine Learning as a Femtography Framework
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Physics Constrained Deep Learning Models

DNN models can spend a lot of computational resources to learn 
physical laws from data. To reduce computation time and improve 
network performance/generalization, we can incorporate those 
laws into the architecture of the network so that certain physical 
properties are inherently satisfied in the network’s predictions.
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Hard v. Soft Constraints

Hard constraints are built into the architecture of the neural 
network itself.

● Always satisfied in network predictions
● Reduces the need for large quantities of data
● Improves generalization and possible extrapolation
● Are difficult to train and optimize
● Architectures can be difficult to develop
● Difficult to interpret how the condition enters

Soft constraints are built into the loss function and are optimized, 
but never really completely satisfied.



18

Physics constrained cross section predictions

J. Grigsby, BK, S. Liuti, et. al. PRD 104 (2021)
M. Almaeen, J. Grigsby, J. Hoskins, BK, Y. Li, H-W. Lin, S. Liuti  arXiv:2207.10766  

Simple physics constraints 
such as symmetry 
properties of the 
unpolarized cross section 
in the loss function lead to 
increased generalization of 
the DNN predictions.

SOFT!
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VAIM-CFF: A variational autoencoder framework

M. Almaeen, J. Grigsby, J. Hoskins, BK, Y. Li, H-W. Lin, S. Liuti  arXiv:2207.10766 

Physics Information
Input
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VAIM: a continuous toy problem

Latent SpacePrediction

The VAIM framework is able to reconstruct the parameter space of 
x0 , x1 such that f = 1.

Notice that a PCA analysis of the first two principal components 
shows that the lost information is the radial dependence and the 
azimuthal dependence.

M. Almaeen, Y. Alanzi, M. Kuchera, Y. Li, W. Melnitchouk, N. Sato  IJCNN (2021)
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VAIM-CFF results

M. Almaeen, J. Grigsby, J. Hoskins, BK, Y. Li, H-W. Lin, S. Liuti  (in progress) 

Some unconstrained CFFs, but notice that the large uncertainty in the 
CFF does not result in a large uncertainty in the cross section.
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VAIM-CFF results

M. Almaeen, J. Grigsby, J. Hoskins, BK, Y. Li, H-W. Lin, S. Liuti  (in progress) 

There exist multiple solutions to this problem (expected) however, the solution set 
to some of the CFFs seems to be bounded.
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Interpretability of the Latent Distribution

M. Almaeen, J. Grigsby, J. Hoskins, BK, Y. Li, H-W. Lin, S. Liuti  (in progress) 

It is still ongoing to study the interpretability of the latent space 
distribution, what is truly being learned by these models?
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Conditional VAIM

M. Almaeen, J. Grigsby, J. Hoskins, BK, Y. Li, H-W. Lin, S. Liuti  (in progress) 

We can take out VAIM and predict across many kinematic variables, 
comparing with other ML-based extractions.
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Upcoming: VAIM for GPDs, searching for signatures of AM

B.K, P. Velie, E. Yeats, F. Yepez-Lopez, S. Liuti  PRD 105 (2022)

8 parameters per GPD for qi
v, q

i
s, g and an initial scale for 

pQCD evolution.

Parameterization developed theoretically in a spectator 
model

M. Almaeen, J. Grigsby, J. Hoskins, BK, Y. Li, H-W. Lin, S. Liuti  (in progress) 

Using VAIM, can we determine all possible 
model parameters for a solution set of GPDs 
that can be fit to theory constraints, lattice 
QCD calculations, and experimental data?

What are the various outcomes/signatures of 
angular momentum allowed by the data?
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Uncertainty Quantification and DVCS Error Analysis

Uncertainty arises in many places when using ML algorithms, it is critical to make 
sure we understand how much we can trust the algorithms predictions. Four factors 
vital for understanding uncertainty are:

1. Statistical uncertainty from experimental measurements
2. Systematic uncertainties from physics measurements

3. Error in the ML model and its architecture
4. Errors in training procedures

We have to make sure we are properly propagating irreducible errors through our 
DNN architectures and that we understand the size of our network errors. We do 
this through a method called random targets.

Irreducible
(aleatoric)

Reducible
(epistemic)
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Random Targets Method

Dropout approximates a large ensemble of number of different 
networks. 
The random targets resample the dataset within the error bars before 
they train each member of the ensemble of networks.

M. Almaeen, J. Grigsby, J. Hoskins, BK, Y. Li, H-W. Lin, S. Liuti  arXiv:2207.10766 
M. Almaeen, J. Hoskins, BK, Y. Li, H-W. Lin, S. Liuti  (in progress)
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Conclusions

Polarization Transfer

Single Diffractive 
Hard-Exclusive 
Processes

Double DVCS

Time-like Compton 
Scattering

Deeply Virtual 
Meson 
Production

Exclusive 
Drell-Yan

It has become extraordinarily apparent that it is 
impossible to extract the full x-dependence of 
GPDs from only DVCS data alone.

● Lattice QCD calculation of moments

● Experimental measurements of elastic form 
factors

● Theoretical GPD properties (polynomiality, 
positivity, symmetries, forward limits)

● DVES data from multi-channel global 
analysis

This complicated reconstruction of the GPD  from 
all the information we have requires new and 
innovative ML techniques.

A suite of uncertainty quantification techniques 
must be applied to determine whether the physics 
of interest are contained in the networks 
predictions.


