Lattice QCD calculation of the pion generalized parton distributions (GPDs)

In collaboration with ANL, Adam Mickiewicz U., Boon U. and Temple U.

RIKEN BNL Research Center **Workshop on Generalized Parton Distributions** for Nucleon Tomography in the EIC Era Hosted by Brookhaven National Laboratory January 17–19, 2024

Qi Shi CCNU & BNL

- Introduction: GPDs, Lattice QCD
- Frame-independent approach
- Lattice simulation in zero-skewness
- Quasi-GPDs
- LaMET -> Valence GPDs

Outline

AF Introduction: GPDs

1D

Form Factor (pion-electron scattering)

AF Introduction: Lattice QCD

From first principle

- Discretizing Spacetime -> $N_s^3 \times N_t$
- QCD Lagrangian $\mathscr{L} \rightarrow \operatorname{action} \mathscr{S}[\phi, \phi, U]$
- Path Integral and Partition Function

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}[$$

 $N_{\text{color}} \otimes N_{\text{flavor}} \otimes N_{\text{spin}} \otimes N_{\text{space}}^3 \otimes N_{\text{time}} \gtrsim 10^9 \quad \otimes \quad N_{\text{polarization}}, N_{\text{momentum}}, N_{\text{temperature}}, \cdots$ Several months ~ years

 $[U] \mathscr{D}[\phi] \mathscr{D}[\bar{\phi}] \mathscr{O} e^{-\mathcal{S}}$

H Frame-independent approach

Traditional: Symmetric

- One \vec{p}^f only one $Q^2 = -t$ is useful
- Each Q^2 requires a separate calculation

Lattice: each \vec{p}^{f} requires a seperate calculation -> Goal: reduce the number of \vec{p}^{f}

Newly proposed: Asymmetric

• One \vec{p}^f — several Q^2 are useful

Frame-independent approach

• Lorentz invariant amplitudes A_i 's

$$F^{\mu}(P, z, Q) = \frac{1}{\sqrt{E^{i}E^{f}}} (P^{\mu}A_{1} + m^{2}z^{\mu}A_{2} + \sqrt{E^{i}E^{f}})$$

 $A_i(\text{Breit}) \sim A_i(\text{Non} - \text{breit})$

• Frame-independent GPD H $H(P, z, \Delta) = A_1 + \frac{z \cdot Q}{z \cdot P} A_3$ $H(P, z, \Delta) = A_1 + \frac{z}{z \cdot P} A_3$ $A_3(-z \cdot Q) = -A_3(z \cdot Q) \quad \stackrel{\xi = 0}{\longrightarrow} \quad A_3(z \cdot Q = 0) = 0$ $H(P, z, \Delta) = A_1$

$P^{\mu}A_{3}), P^{\mu} = (p_{f}^{\mu} + p_{i}^{\mu})/2, Q^{\mu} = p_{f}^{\mu} - p_{i}^{\mu}.$

H Comparison of A_i obtained from both frames

$$P_z = 0.968 \text{ GeV}^2, Q^2 = \begin{cases} 0.938 \text{ GeV}^2, & \text{Breit} \\ 0.952 \text{ GeV}^2, & \text{Non-brein} \end{cases}$$

eit

• Work on the Non-breit frame

 $F^{\mu}(P, z, \Delta) = \frac{1}{\sqrt{E^{i}E^{f}}} (P^{\mu}A_{1} + m^{2}z^{\mu}A_{2} + Q^{\mu}A_{3}).$ $H(P, z, \Delta) = A_{1} + \frac{z \cdot Q}{z \cdot P} A_{3}.$ $F^{t}(P, z, \Delta) = \frac{E^{i} + E^{f}}{2\sqrt{E^{i}E^{f}}}A_{1},$ $H(P, z, \Delta) = A_1 = \frac{-\sqrt{2} - 2}{E^i + E^f} F^t$

H Bare Matrix elements

- Large momenta: $P_z = 1.453, 1.937$ C
- Varying different momentum transfer

GeV,

$$Q^2 = -t$$

$$Q^{2} = 0.000 \text{ GeV}^{2}$$

$$Q^{2} = 0.231 \text{ GeV}^{2}$$

$$Q^{2} = 0.455 \text{ GeV}^{2}$$

$$Q^{2} = 0.887 \text{ GeV}^{2}$$

$$Q^{2} = 1.095 \text{ GeV}^{2}$$

$$Q^{2} = 1.690 \text{ GeV}^{2}$$

$$P_{z} = 1.937 \text{ GeV}$$

$$P_{z} = 1.937 \text{ GeV}$$

Renormalization: Hybrid scheme

- RI/MOM, ratio schemes short distance
- Hybrid scheme

Logarithmic Here

$$F^{B}(z, a) = Z(a)e^{-\delta m(a)|z|}e^{-\delta m(a)|z|}e^{-\delta$$

Hybrid scheme,
$$F^R$$

 $z \ge z_S : -\frac{1}{z}$

$$F^R(z_s)$$

Ji et al., NPB 964 (2021) 115311

long distance

andle the renormalon ambiguity $-\overline{m}_0|z|F^R(z)$.

Gao et al., PRL 128 (2022) 142003

 $\frac{F^R(z, \vec{p}, \vec{q})}{F^R(z, 0, 0)} = \frac{F^B(z, \vec{p}, \vec{q})}{F^B(z, 0, 0)}, \quad \text{Ratio scheme}$

 $\frac{F^{R}(z, \vec{p}, \vec{q})}{F^{R}(z, 0, 0)} = e^{(\delta m + \bar{m}_{0})|z - z_{S}|} \frac{F^{B}(z, \vec{p}, \vec{q})}{F^{B}(z_{S}, 0, 0)}$

Hybrid-scheme

- $a\delta m(a) = 0.1508(12)$ for a = 0.04 fm lattice.

HRenormalization

11

HF Extrapolation

1.0 $F^R = A \frac{e^{-mz}}{\lambda^d}$ 0.8 0.6 F^R 0.40.20.0 -0.20

H Fourier transform -> Quasi-GPDs

$$\tilde{f}(x, z_S, P_z, Q^2 = -t) = \int \frac{d\lambda}{2\pi} e^{-t}$$

 $e^{ix\lambda}F^R(\lambda, z_S, P_z, Q^2 = -t), \quad \lambda = zP_z$

Perturbative matching: LaMET

$$f(x,\xi=0,Q^{2},\mu) = \int_{-\infty}^{\infty} \frac{\mathrm{d}y}{|y|} C^{-1}\left(\frac{x}{y},\frac{\mu}{yp_{z}},|y|\lambda_{S}\right) \tilde{f}(y,\xi=0,Q^{2},\mu) + \mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}^{2}}{(xp_{z})^{2}},\frac{\Lambda_{\mathrm{QCD}}^{2}}{[(1-x)p_{z}]^{2}}\right)$$

$$\approx \int_{-\infty}^{\infty} \frac{\mathrm{d}k}{|k|} \int_{-\infty}^{\infty} \frac{\mathrm{d}y}{|y|} C_{\mathrm{evo}}^{-1} \left(\frac{x}{k}, \frac{\mu}{\mu_0}\right) C_{\mathrm{mat}}^{-1} \left(\frac{k}{y}, \frac{\mu_0}{yp_z}, |y|\lambda_s\right) \tilde{f}(y, \xi = 0, Q^2, \mu_0) \,.$$

$$\left[f(x,\xi=0,Q^2,\mu)\right]_x \approx \sum_{k,y} \left[C_{\text{evo}}^{-1}\right]_{xk} \left[$$

Ji, PRL 110 (2013) 262002

 $\left[C_{\text{mat}}^{-1}\right]_{ky} \left[\tilde{f}(y,\xi=0,Q^2,\mu)\right]_y.$

W Valence GPDs: $Q^2(-t)$ -dependence

- Fixed scale & RGR: -x > 0.3: identity
 - ? < x < 0.3: correction
- Scale variation (lighter filled bands):

-? < x < 0.3

W Valence GPDs: x-dependence

We Valence GPDs: Order-dependence

 $Q^2 = -t$ increases

NNLO: better perturbative convergence

Order-dependence reduces

- Confirm the frame-independence of the amplitudes A_i 's
- Get the quasi-GPDs
 - hybrid-scheme renormalization
 - NNLO + LRR + RGR
- Get the pion valance GPDs with LaMET
 - fixed scale $\mu = 2$ GeV & DGLAP evolution

- Q^2 -, x-, and Order-dependence

Thanks for your attention!

Backup

Amplitude

Non-breit

$$\begin{split} F_{\mathrm{M}}^{t}(z,p,\Delta) &= \frac{1}{\sqrt{E^{i}E^{f}}} \left(p_{\mathrm{M}}^{t}A_{1} + \Delta_{\mathrm{M}}^{t}A_{3} \right), \\ F_{\mathrm{M}}^{x}(z,p,\Delta) &= \frac{1}{\sqrt{E^{i}E^{f}}} \left(p_{\mathrm{M}}^{x}A_{1} + \Delta_{\mathrm{M}}^{x}A_{3} \right), \\ F_{\mathrm{M}}^{y}(z,p,\Delta) &= \frac{1}{\sqrt{E^{i}E^{f}}} \left(p_{\mathrm{M}}^{y}A_{1} + \Delta_{\mathrm{M}}^{y}A_{3} \right), \\ F_{\mathrm{M}}^{z}(z,p,\Delta) &= \frac{1}{\sqrt{E^{i}E^{f}}} \left(p_{\mathrm{M}}^{z}A_{1} + m^{2}z_{\mathrm{M}}^{z}A_{2} + \Delta_{\mathrm{M}}^{z}A_{\mathrm{M}}^{z} \right) \end{split}$$

Breit

$$\begin{split} F_{\mathrm{M}}^{t}(z,p,\Delta) &= \frac{E^{i} + E^{f}}{2\sqrt{E^{i}E^{f}}}A_{1} = A_{1}, \\ F_{\mathrm{M}}^{x}(z,p,\Delta) &= \frac{p_{x}^{f} - p_{x}^{i}}{\sqrt{E^{i}E^{f}}}A_{3}, \\ F_{\mathrm{M}}^{y}(z,p,\Delta) &= \frac{p_{y}^{f} - p_{y}^{i}}{\sqrt{E^{i}E^{f}}}A_{3}, \\ F_{\mathrm{M}}^{z}(z,p,\Delta) &= \frac{p_{z}^{i} + p_{z}^{f}}{2\sqrt{E^{i}E^{f}}}A_{1} + \frac{m^{2}z_{z}}{\sqrt{E^{i}E^{f}}}A_{2}, \end{split}$$

$$A_3$$
).

HE Lattice Setup

- $N_s^3 \times N_t = 64^3 \times 64$, a = 0.04 fm
- HISQ action + Wilson-Clover action \Rightarrow
- Using boost smearing to enhance the signal
- Momentum transfer Q^2 : 0 ~ 1.7 GeV²

Frame	$n_p^z, p^z (\text{GeV})$	Г	n_q	$N_{\rm cfg} * N_{\rm src}$
Breit	(0, 1, 2), 1.083	$\gamma_x, \gamma_y, \gamma_t$	(0, -2, 0)	115*32 = 3680
Non-breit	(0, 0, 0), 0 (0, 0, 1), 0.484 (0, 0, 2), 0.968 (0, 0, 3), 1.453 (0, 0, 4), 1.937	$\gamma_x, \gamma_y, \gamma_t$	(0, 0, 0), (0, -1, 0) (-1, -1, 0), (0, -2, 0) (-1, -2, 0), (-2, -2, 0)	314*96=30144 564*96=54144

$$m_{\pi}^{\mathrm{val}} = 0.3 \; \mathrm{GeV}$$

Here How to get the bare matrix elements from lattice

 $C_{2pt}(t,\vec{p}) = \left\langle H(t_s,\vec{p})H^{\dagger}(0,\vec{p}) \right\rangle$

Insert $\mathcal{O}(\tau, \vec{q})$ $\vec{p}^f = \vec{p}^i + \vec{q}$

 $C_{3pt}(z;\tau,t_s;\vec{p}^i,\vec{p}^f) = \left\langle H(t_s,\vec{p}^f)\hat{\mathcal{O}}_{\Gamma}(z,\tau,\vec{q})H^{\dagger}(0,\vec{p}^i) \right\rangle \qquad (0,\vec{p}^i) \bullet \qquad C_{3pt}$ $\Gamma:\hat{1},\gamma^{\mu},\sigma^{\mu\nu}$

 $F^B = \left\langle E_0, \vec{p}^f | \hat{\mathcal{O}}_{\gamma^{\mu}}(z, \tau, \vec{q}) | E_0, \vec{p}^i \right\rangle \text{from } \sim C_{3pt} / C_{2pt}$

W Valence GPD: *z_s*-dependence

$$P_{z} = 1.937 \text{ GeV}, Q^{2} = 0.000 \text{ GeV}^{2}$$

W Valence GPD: P_z -dependence

