From nonsinglet to singlet GPDs in lattice QCD

Jianhui Zhang

The Chinese University of Hong Kong, Shenzhen

香港中文大學(深圳) The Chinese University of Hong Kong, Shenzhen

RBRC Workshop: Workshop on Generalized Parton Distributions for Nucleon Tomography in the EIC Era, Jan 18, 2024

- The GPDs as generalizations of the PDFs to **non-forward** kinematics
 - Depend on multiple kinematic variables x, ξ, t
 - Factorization theorem

$$\mathcal{H}\left(\xi,t,Q^{2}\right) = \int_{-1}^{1} \frac{\mathrm{d}x}{\xi} \sum_{a=g,u,d,\dots} C^{a}\left(\frac{x}{\xi},\frac{Q^{2}}{\mu_{F}^{2}},\alpha_{S}\left(\mu_{F}^{2}\right)\right) H^{a}\left(x,\xi,t,\mu_{F}^{2}\right)$$

- Various models for GPD parametrization have been used for their extraction from experimental data Kumericki et al, EPJA 16'
- A recent example: through universal moments parametrization Guo et al, JHEP 23'

- The GPDs as generalizations of the PDFs to **non-forward** kinematics
 - Depend on multiple kinematic variables x, ξ, t
 - Factorization theorem

$$\mathcal{H}\left(\xi,t,Q^{2}\right) = \int_{-1}^{1} \frac{\mathrm{d}x}{\xi} \sum_{a=g,u,d,\dots} C^{a}\left(\frac{x}{\xi},\frac{Q^{2}}{\mu_{F}^{2}},\alpha_{S}\left(\mu_{F}^{2}\right)\right) H^{a}\left(x,\xi,t,\mu_{F}^{2}\right)$$

- Various models for GPD parametrization have been used for their extraction from experimental data Kumericki et al, EPJA 16'
- ML/DNN applied to analyze exclusive scattering X-sections Almaeen et al, 22'

Lattice QCD can provide important complementary inputs — moments

$$\langle N(p_f) | V^+_{\mu}(x) | N(p_i) \rangle =$$

$$\bar{u}^N \left[\gamma_{\mu} F_1(q^2) + i \sigma_{\mu\nu} \frac{q^{\nu}}{2M_N} F_2(q^2) \right] u_N e^{iq \cdot x}$$

$$\langle N(p_f) | A^+_{\mu}(x) | N(p_i) \rangle =$$

$$\bar{u}_N \left[\gamma_{\mu} \gamma_5 G_A(q^2) + i q_{\mu} \gamma_5 G_P(q^2) \right] u_N e^{iq \cdot x}$$

Constantinou, JHZ et al, PPNP 21'

Lattice QCD can provide important complementary inputs — moments

- Lattice QCD can provide important complementary inputs x-dependent distributions
- Significant progress has been achieved along this line

H-W Lin, FBS 23'

- Lattice QCD can provide important complementary inputs x-dependent distributions
- A popular approach: Large-momentum effective theory (LaMET) Ji, PRL 13' & SCPMA 14', Ji, JHZ et al, RMP 21'

• Theory studies and/or lattice calculations available for

- Collinear PDFs, distribution amplitudes
- GPDs, TMDPDFs/wave functions
- Higher-twist distributions, double parton distributions

A huge number of references...

- Lattice QCD can provide important complementary inputs x-dependent distributions
- A popular approach: Large-momentum effective theory (LaMET) Ji, PRL 13' & SCPMA 14', Ji, JHZ et al, RMP 21'
- Examples of the state-of-the-art:

Nucleon quark transversity PDF

Pion valence quark PDF

Yao, JHZ et al (LPC) PRL 23'

Gao et al, PRD 22'

- Lattice QCD can provide important complementary inputs x-dependent distributions
- A popular approach: Large-momentum effective theory (LaMET) Ji, PRL 13' & SCPMA 14', Ji, JHZ et al, RMP 21'
- Examples of the state-of-the-art:

Nucleon quark unpolarized GPD

- Lattice QCD can provide important complementary inputs x-dependent distributions
- A popular approach: Large-momentum effective theory (LaMET) Ji, PRL 13' & SCPMA 14', Ji, JHZ et al, RMP 21'
- Examples of the state-of-the-art:

Impact parameter distribution

Lin, PRL 21'

- Lattice QCD can provide important complementary inputs x-dependent distributions
- A popular approach: Large-momentum effective theory (LaMET) Ji, PRL 13' & SCPMA 14', Ji, JHZ et al, RMP 21'
- Examples of the state-of-the-art:

Impact parameter distribution

•Potential improvement:

- ratio-hybrid renormalization of lattice matrix elements
- Perturbative matching to be updated
 - F. Yao, Y. Ji, JHZ, JHEP 23' (state-of-the-art manual for all collinear leading-twist quantities)

Outrol of power corrections

 b_x

0.5

b,

0.7

- Lattice QCD can provide important complementary inputs x-dependent distributions
- A popular approach: Large-momentum effective theory (LaMET) Ji, PRL 13' & SCPMA 14', Ji, JHZ et al, RMP 21'
- Examples of the state-of-the-art:

Leading-twist violates translational invariance, which can be restored by including kinematic higher-twist contributions Braun, 23'

Towards precision control

- Recent developments for collinear PDFs
 - Higher-order perturbative correction
 - Unpol. quark PDF@NNLO Li et al, PRL 21', Chen et al, PRL 21'
 - Quark TMDPDF@NNLO Del Rio et al, PRD 23', Ji et al, JHEP 23'
 - RG resummation Su, JHZ et al, NPB 23'
 - Threshold resummation Gao et al, PRD 21', Ji et al, JHEP 23'
 - Power correction, renormalon ambiguity Chen, JHZ et al, PRD 17', Braun, JHZ et al, PRD 19', Liu et al, PRD 21', Zhang et al, PLB 23'
 - Control of lattice artifacts
 - ANL-BNL, ETMC, LPC, MSU...
- Shall be extended to GPDs Holligan et al, 23', Braun et al, 24'

- Calculations so far are focused on isovector/nonsinglet combinations that do not mix with gluons
- Renormalization and matching are mostly done in an out-of-date scheme
- There exist discrepancies in results from different groups, from collinear PDFs to GPDs
- It is desirable to have a unified framework for perturbative matching connecting Euclidean to lightcone correlations in a state-of-the-art scheme
- Both for flavor nonsinglet and singlet, in forward and non-forward kinematics, and in coordinate and momentum space
- Provide a manual for extracting all leading-twist GPDs, PDFs and DAs in a state-of-the-art scheme from lattice QCD, and facilitate higher-order perturbative matching calculations

Quark operator bases F. Yao, Y. Ji, JHZ, JHEP 23'

$$O_q^{ns}(z_1, z_2) = rac{1}{2} \left[O_q(z_1, z_2) \pm O_q(z_2, z_1)
ight], \ O_q^s(z_1, z_2) = rac{1}{2} \left[O_q(z_1, z_2) \mp O_q(z_2, z_1)
ight]$$

- The upper sign corresponds to the unpolarized (vector) case, the low sign corresponds to the helicity (axial-vector) case
- Transversity always takes the + sign, and does not mix with gluons
- Gluon operator bases

$$egin{aligned} &O_{g,u}(z_1,z_2) = g_{\perp}^{\mu
u} \mathbf{F}_{\mu
u}\,, \ &O_{g,h}(z_1,z_2) = i\epsilon_{\perp}^{\mu
u} \mathbf{F}_{\mu
u}\,, \ &O_{g,t}\,(z_1,z_2) = \hat{S}\,\mathbf{F}_{\mu
u} = rac{1}{2}\,[\mathbf{F}_{\mu
u} + \mathbf{F}_{
u\mu}] - rac{1}{d-2}\,g_{\perp}^{\mu
u}\,\mathbf{F}_{lpha}^{\,lpha}, \end{aligned}$$

$$\mathbf{F}_{\mu
u} = z_{12}^{
ho} \mathrm{F}_{
ho\mu}(z_1)[z_1, z_2] \mathrm{F}_{
u\sigma}(z_2) z_{12}^{\sigma} \equiv \mathrm{F}_{z_{12}\mu}(z_1)[z_1, z_2] \mathrm{F}_{
u z_{12}}(z_2)$$

 Sandwiching these operators between different external states defines different quasi-observables

● Factorization formula F. Yao, Y. Ji, JHZ, JHEP 23'

$$\begin{pmatrix} O_q \\ O_g \end{pmatrix} = \begin{pmatrix} C_{qq} & C_{qg} \\ C_{gq} & C_{gg} \end{pmatrix} \otimes \begin{pmatrix} O_q^{l.t.} \\ O_g^{l.t.} \\ O_g^{l.t.} \end{pmatrix} + h.t.$$

l.t. stands for the leading-twist projection which acts as the generating function of leading-twist local operators and gives lightcone quantities

$$\langle P_1 S_1 | O_{\gamma^+}^{l.t.}(z_1^-, z_2^-) | P_2 S_2 \rangle$$

= $\int_{-1}^1 dx \, e^{i(x+\xi)P^+ z_1^- - i(x-\xi)P^+ z_2^-} \bar{u}(P_1 S_1) \big[H(x,\xi,t)\gamma^+ + E(x,\xi,t) \frac{i\sigma^{+\mu}\Delta_{\mu}}{2M} \big] u(P_2 S_2)$

 The mixing matrix depends on two Feynman parameters in general, for example

$$\begin{aligned} O_q(z_1, z_2) &= \int_0^1 d\alpha \int_0^{\bar{\alpha}} d\beta \left[C_{qq}(\alpha, \beta, \mu^2 z_{12}^2) O_q^{l.t.}(z_{12}^{\alpha}, z_{21}^{\beta}) + C_{qg}(\alpha, \beta, \mu^2 z_{12}^2) O_g^{l.t.}(z_{12}^{\alpha}, z_{21}^{\beta}) \\ &+ \widetilde{C}_{qq}(\alpha, \beta, \mu^2 z_{12}^2) O_q^{l.t.}(z_{21}^{\alpha}, z_{12}^{\beta}) + \widetilde{C}_{qg}(\alpha, \beta, \mu^2 z_{12}^2) O_g^{l.t.}(z_{21}^{\alpha}, z_{12}^{\beta}) \right], \end{aligned}$$

Obtermination of matching matrix F. Yao, Y. Ji, JHZ, JHEP 23'

$$\begin{array}{ll} O_q/O_q^{l.t.} & O_g/O_g^{l.t.} \\ \mbox{quark} & C_{qq}^{(1)} = \frac{\langle q|O_q|q'\rangle^{(1)} - \langle q|O_q^{l.t.}|q'\rangle^{(1)}}{\langle q|O_q^{l.t.}|q'\rangle^{(0)}} & C_{gq}^{(1)} = \frac{\langle q|O_g|q'\rangle^{(1)} - \langle q|O_g^{l.t.}|q'\rangle^{(1)}}{\langle q|O_q^{l.t.}|q'\rangle^{(0)}} \\ \mbox{gluon} & C_{qg}^{(1)} = \frac{\langle g|O_q|g'\rangle^{(1)} - \langle g|O_q^{l.t.}|g'\rangle^{(1)}}{\langle g|O_g^{l.t.}|g'\rangle^{(0)}} & C_{gq}^{(1)} = \frac{\langle g|O_g|g'\rangle^{(1)} - \langle g|O_g^{l.t.}|g'\rangle^{(1)}}{\langle g|O_g^{l.t.}|g'\rangle^{(0)}} \end{array}$$

 \odot NLO results in \overline{MS} scheme

$$\begin{split} C_{qq}^{\overline{\mathrm{MS}}}(\alpha,\beta,\mu^2 z_{12}^2) &= \delta(\alpha)\delta(\beta) + 2a_s C_F \bigg\{ \left(A_2 + \left[\frac{\bar{\alpha}}{\alpha}\right]_+ \delta(\beta) + \left[\frac{\beta}{\beta}\right]_+ \delta(\alpha) \right) (\mathrm{L_z} - 1) + \mathrm{A_3} \\ &- 2 \left[\frac{\mathrm{ln}(\alpha)}{\alpha}\right]_+ \delta(\beta) - 2 \left[\frac{\mathrm{ln}(\beta)}{\beta}\right]_+ \delta(\alpha) \bigg\} + 2a_s C_F (-2\mathrm{L_z} + 2)\delta(\alpha)\delta(\beta) \,, \\ &A_{2,u} = 1 \,, \qquad A_{2,h} = 1 \,, \qquad A_{2,t} = 0 \,, \\ &A_{3,u} = 2 \,, \qquad A_{3,h} = 4 \,, \qquad A_{3,t} = 0 \,, \end{split}$$

Obtermination of matching matrix F. Yao, Y. Ji, JHZ, JHEP 23'

$$\begin{array}{ll} O_q/O_q^{l.t.} & O_g/O_g^{l.t.} \\ \mbox{quark} & C_{qq}^{(1)} = \frac{\langle q|O_q|q'\rangle^{(1)} - \langle q|O_q^{l.t.}|q'\rangle^{(1)}}{\langle q|O_q^{l.t.}|q'\rangle^{(0)}} & C_{gq}^{(1)} = \frac{\langle q|O_g|q'\rangle^{(1)} - \langle q|O_g^{l.t.}|q'\rangle^{(1)}}{\langle q|O_q^{l.t.}|q'\rangle^{(0)}} \\ \mbox{gluon} & C_{qg}^{(1)} = \frac{\langle g|O_q|g'\rangle^{(1)} - \langle g|O_q^{l.t.}|g'\rangle^{(1)}}{\langle g|O_g^{l.t.}|g'\rangle^{(0)}} & C_{gq}^{(1)} = \frac{\langle g|O_g|g'\rangle^{(1)} - \langle g|O_g^{l.t.}|g'\rangle^{(1)}}{\langle g|O_g^{l.t.}|g'\rangle^{(0)}} \end{array}$$

■ NLO results in MS scheme

$$\begin{split} C_{gg}^{\overline{\mathrm{MS}}}(\alpha,\beta,\mu^{2}z_{12}^{2}) = &\delta(\alpha)\delta(\beta) + 2a_{s}C_{A} \bigg\{ \left(E_{1} + \left[\frac{\bar{\alpha}^{2}}{\alpha}\right]_{+}\delta(\beta) + \left[\frac{\bar{\beta}^{2}}{\beta}\right]_{+}\delta(\alpha)\right) (\mathrm{L}_{z}-1) + E_{2} \\ &- 2\left[\frac{\ln(\alpha)}{\alpha}\right]_{+}\delta(\beta) - 2\left[\frac{\ln(\beta)}{\beta}\right]_{+}\delta(\alpha)\bigg\} + 2a_{s}C_{A}\left(-3\,\mathrm{L}_{z}+2\right)\delta(\alpha)\delta(\beta) \,, \end{split}$$

$$E_{1,u} = 4(1 - \alpha - \beta + 3\alpha\beta), \qquad E_{1,h} = 4(1 - \alpha - \beta), \qquad E_{1,t} = 0,$$

$$E_{2,u} = \frac{5}{2} E_{1,u} + 6\alpha\beta, \qquad E_{2,h} = \frac{3}{2} E_{1,h}, \qquad E_{2,t} = 2(1 + \alpha + \beta - 2\alpha\beta).$$

Obtermination of matching matrix F. Yao, Y. Ji, JHZ, JHEP 23'

$$\begin{array}{ll} O_q/O_q^{l.t.} & O_g/O_g^{l.t.} \\ \mbox{quark} & C_{qq}^{(1)} = \frac{\langle q|O_q|q'\rangle^{(1)} - \langle q|O_q^{l.t.}|q'\rangle^{(1)}}{\langle q|O_q^{l.t.}|q'\rangle^{(0)}} & C_{gq}^{(1)} = \frac{\langle q|O_g|q'\rangle^{(1)} - \langle q|O_g^{l.t.}|q'\rangle^{(1)}}{\langle q|O_q^{l.t.}|q'\rangle^{(0)}} \\ \mbox{gluon} & C_{qg}^{(1)} = \frac{\langle g|O_q|g'\rangle^{(1)} - \langle g|O_q^{l.t.}|g'\rangle^{(1)}}{\langle g|O_g^{l.t.}|g'\rangle^{(0)}} & C_{gq}^{(1)} = \frac{\langle g|O_g|g'\rangle^{(1)} - \langle g|O_g^{l.t.}|g'\rangle^{(1)}}{\langle g|O_g^{l.t.}|g'\rangle^{(0)}} \end{array}$$

NLO results in MS scheme

$$\begin{split} C_{qg}^{\overline{\text{MS}}}(\alpha,\beta,\mu^2 z_{12}^2) &= 4ia_s T_F N_f \, \mathbf{z}_{12} \, B_3 \, \mathbf{L}_z \, . \\ B_{3,u} &= \bar{\alpha}\bar{\beta} + 3\alpha\beta \, , \qquad B_{3,h} = \bar{\alpha}\bar{\beta} - \alpha\beta . \\ C_{gq}^{\overline{\text{MS}}}(\alpha,\beta,\mu^2 z_{12}^2) &= \frac{-2ia_s C_F}{\mathbf{z}_{12}} \Big\{ D_3 \left(\mathbf{L}_z + 1\right) + 4 - 2\big(\delta(\alpha) + \delta(\beta)\big) + \left(\mathbf{L}_z + D_4\right)\delta(\alpha)\delta(\beta) \Big\} \, , \\ D_{3,u} &= 2 \, , \qquad D_{3,h} = -2 \, , \qquad D_{4,u} = 1 \, , \qquad D_{4,h} = 0 \, . \end{split}$$

Results in ratio and hybrid schemes are also available

Obtermination of matching matrix F. Yao, Y. Ji, JHZ, JHEP 23'

$$\begin{array}{ll} O_q/O_q^{l.t.} & O_g/O_g^{l.t.} \\ \mbox{quark} & C_{qq}^{(1)} = \frac{\langle q | O_q | q' \rangle^{(1)} - \langle q | O_q^{l.t.} | q' \rangle^{(1)}}{\langle q | O_q^{l.t.} | q' \rangle^{(0)}} & C_{gq}^{(1)} = \frac{\langle q | O_g | q' \rangle^{(1)} - \langle q | O_g^{l.t.} | q' \rangle^{(1)}}{\langle q | O_q^{l.t.} | q' \rangle^{(0)}} \\ \mbox{gluon} & C_{qg}^{(1)} = \frac{\langle g | O_q | g' \rangle^{(1)} - \langle g | O_q^{l.t.} | g' \rangle^{(1)}}{\langle g | O_g^{l.t.} | g' \rangle^{(0)}} & C_{gq}^{(1)} = \frac{\langle g | O_g | g' \rangle^{(1)} - \langle g | O_g^{l.t.} | g' \rangle^{(1)}}{\langle g | O_g^{l.t.} | g' \rangle^{(0)}} \end{array}$$

NLO results in MS scheme

$$\begin{split} C_{qg}^{\overline{\text{MS}}}(\alpha,\beta,\mu^{2}z_{12}^{2}) &= 4ia_{s}T_{F}N_{f}\,\mathbf{z}_{12}\,B_{3}\,\mathbf{L}_{z}\,.\\ B_{3,u} &= \bar{\alpha}\bar{\beta} + 3\alpha\beta\,, \qquad B_{3,h} = \bar{\alpha}\bar{\beta} - \alpha\beta\,.\\ C_{gq}^{\overline{\text{MS}}}(\alpha,\beta,\mu^{2}z_{12}^{2}) &= \underbrace{-2ia_{s}C_{F}}_{\mathbf{Z}_{12}}\left\{D_{3}\left(\mathbf{L}_{z}+1\right) + 4 - 2\left(\delta(\alpha) + \delta(\beta)\right) + \left(\mathbf{L}_{z}+D_{4}\right)\delta(\alpha)\delta(\beta)\right\},\\ D_{3,u} &= 2\,, \qquad D_{3,h} = -2\,, \qquad D_{4,u} = 1\,, \qquad D_{4,h} = 0\,. \end{split}$$

Results in ratio and hybrid schemes are also available

Obtermination of matching matrix F. Yao, Y. Ji, JHZ, JHEP 23'

$$\begin{array}{ll} O_q/O_q^{l.t.} & O_g/O_g^{l.t.} \\ \mbox{quark} & C_{qq}^{(1)} = \frac{\langle q | O_q | q' \rangle^{(1)} - \langle q | O_q^{l.t.} | q' \rangle^{(1)}}{\langle q | O_q^{l.t.} | q' \rangle^{(0)}} & C_{gq}^{(1)} = \frac{\langle q | O_g | q' \rangle^{(1)} - \langle q | O_g^{l.t.} | q' \rangle^{(1)}}{\langle q | O_q^{l.t.} | q' \rangle^{(0)}} \\ \mbox{gluon} & C_{qg}^{(1)} = \frac{\langle g | O_q | g' \rangle^{(1)} - \langle g | O_q^{l.t.} | g' \rangle^{(1)}}{\langle g | O_g^{l.t.} | g' \rangle^{(0)}} & C_{gq}^{(1)} = \frac{\langle g | O_g | g' \rangle^{(1)} - \langle g | O_g^{l.t.} | g' \rangle^{(1)}}{\langle g | O_g^{l.t.} | g' \rangle^{(0)}} \end{array}$$

Ouble Fourier transform gives the results for GPDs in momentum space

$$\frac{1}{\mathbf{z_{12}}} e^{ix\mathbf{z_{12}}} = i \int_{\infty(-1+i\epsilon)}^{x} e^{ix_1\mathbf{z_{12}}} \, dx_1$$

- The lower limit is chosen for convenience and brings ambiguities
- Removed by requiring that the same moments are generated before and after FT

Obtermination of matching matrix F. Yao, Y. Ji, JHZ, JHEP 23'

The momentum space results obtained from the FT

- Agree with direct calculations in momentum space up to terms that vanish upon integration, except for C_{gq}
- Expected to be
 - related to the prescription of the pole $1/\mathbf{z}_{12}$
 - connected to the long-standing mismatch in GPD evolution kernel calculations in coordinate and momentum space

Implementation in lattice calculations of GPDs

 $\xi = 0.1$

Holligan et al, 23'

Summary

- Lattice QCD can provide complementary information to experimental data on the 3D structure of nucleons
- For simple quantities such as collinear PDFs, lattice calculations of xdependent distributions have reached a stage where precision control becomes important
- Similar analyses shall be extended to the lattice calculations of GPDs
- A unified framework has been developed for perturbative calculations required for the extraction of all leading-twist collinear parton observables
- Sheds light on the discrepancy in existing results in the literature
- Facilitate perturbative calculations to higher orders