Workshop on GPDs for Nuclear Tomography in the EIC Era

Single Diffractive Hard Exclusive Scattering for studying Generalized Parton Distributions (GPDs)

Zhite Yu (Jefferson Lab, Theory Center)

In collaboration with Jianwei Qiu

JHEP 08 (2022) 103, PRD 107 (2023) 014007, PRL 131 (2023) 161902, arXiv:2401.xxxxx

Jan/18/2024 at BNL

Exclusive Processes and GPDs

Exclusive Processes and GPDs

QCD energy-momentum tensor

$$T^{\mu\nu} = \sum_{i=q,g} T_i^{\mu\nu} \text{ with } T_q^{\mu\nu} = \bar{\psi}_q \, i\gamma^{(\mu} \overleftrightarrow{D}^{\nu)} \, \psi_q - g^{\mu\nu} \bar{\psi}_q \left(i\gamma \cdot \overleftrightarrow{D} - m_q \right) \psi_q \text{ and } T_g^{\mu\nu} = F^{a,\mu\eta} F^{a,\,\mu\nu} + \frac{1}{4} g^{\mu\nu} \left(F^a_{\rho\eta} \right)^2$$

□ Gravitational form factor

$$\langle p' | T_i^{\mu\nu} | p \rangle = \bar{u}(p') \left[A_i(t) \frac{P^{\mu} P^{\nu}}{m} + J_i(t) \frac{i P^{(\mu} \sigma^{\nu)\Delta}}{2m} + D_i(t) \frac{\Delta^{\mu} \Delta^{\nu} - g^{\mu\nu} \Delta^2}{4m} + m \,\bar{c}_i(t) \, g^{\mu\nu} \right] u(p)$$

Connection to GPD moments

$$\int_{-1}^{1} dx \, x \, F_i(x,\xi,t) \propto \langle p'|T_i^{++}|p\rangle \propto \bar{u}(p') \begin{bmatrix} (A_i + \xi^2 D_i) \gamma^+ + (B_i - \xi^2 D_i) \frac{i\sigma^{+\Delta}}{2m} \end{bmatrix} u(p)$$
Angular momentum sum rule
$$\int_{-1}^{1} dx \, x \, H_i(x,\xi,t) = \int_{-1}^{1} dx \, x \, E_i(x,\xi,t) = \int_{-1}^{1} d$$

...

Angular momentum sum rule

$$J_{i} = \lim_{t \to 0} \int_{-1}^{1} dx \, x \left[H_{i}(x,\xi,t) + E_{i}(x,\xi,t) \right]$$

i = q, g

 J_{-1} to extract the *D*-term

x-dependence!

- 3D tomography
- relations to GFF
- angular momentum

Why is the GPD *x*-dependence so *difficult* to measure?

□ Amplitude nature: exclusive processes

$$i\mathcal{M} \sim \int_{-1} \mathrm{d}\boldsymbol{x} F(\boldsymbol{x},\xi,t) \cdot C(\boldsymbol{x},\xi;Q/\mu)$$

never pin down to some x

Why is the GPD *x*-dependence so *difficult* to measure?

Why is the GPD *x*-dependence so *difficult* to measure?

SDHEP: Two-stage paradigm and channel expansion

SDHEP: Two-stage paradigm and channel expansion

SDHEP: Two-stage paradigm and channel expansion

SDHEP: Two-stage paradigm and channel expansion (twist expansion)

Classification of SDHEPs

□ Electro-production (JLab, EIC, …)

Classification of SDHEPs

□ Electro-production (JLab, EIC, ...)

□ Photo-production (JLab, EIC, …)

Classification of SDHEPs

□ Electro-production (JLab, EIC, ...)

□ Photo-production (JLab, EIC, …)

□ Meso-production (AMBER, J-PARC, ...)

Generic discussion

[Qiu, Yu, PRD 107 (2023), 014007]

Where does the sensitivity come from?

\Box *x*-sensitivity \Leftrightarrow 2 \rightarrow 2 hard scattering

Kinematics:

1.
$$\hat{s} = 2 \xi s / (1 + \xi)$$
 \leftarrow ξ
2. θ or $q_T = \sqrt{\hat{s}} \sin\theta/2$ \leftrightarrow x
3. ϕ (A^*B) spin states

$$\mathcal{M}(Q,\phi) \simeq \sum_{A} e^{i(\lambda_A - \lambda_B)\phi} \cdot \int_{-1}^{1} dx \, F_A(x) \, C_A(x;Q) \qquad (Q = \theta \text{ or } q_T)$$
[suppressing *t* and ξ dependence]

Where does the sensitivity come from?

\Box x-sensitivity \Leftrightarrow 2 \rightarrow 2 hard scattering

Kinematics:

1.
$$\hat{s} = 2 \xi s / (1 + \xi)$$
 \leftarrow ξ
2. θ or $q_T = \sqrt{\hat{s}} \sin\theta/2$ \leftarrow x
3. ϕ (A^*B) spin states

 $\mathcal{M}(Q,\phi) \simeq \sum_{A} e^{i(\lambda_{A}-\lambda_{B})\phi} \cdot \int_{-1}^{1} dx \, F_{A}(x) \, C_{A}(x;Q) \qquad (Q = \theta \text{ or } q_{T})$ [suppressing t and ξ dependence] $\mathcal{M}(Q,\phi) \simeq \sum_{A} e^{i(\lambda_{A}-\lambda_{B})\phi} \cdot \int_{-1}^{1} dx \, F_{A}(x) \, C_{A}(x;Q) \qquad (Q = \theta \text{ or } q_{T})$ [suppressing t and ξ dependence] $\mathcal{M}(Q,\phi) \simeq \sum_{A} e^{i(\lambda_{A}-\lambda_{B})\phi} \cdot \int_{-1}^{1} dx \, F_{A}(x) \, C_{A}(x;Q) \qquad (Q = \theta \text{ or } q_{T})$ [suppressing t and ξ dependence] $\mathcal{M}(Q,\phi) \simeq \sum_{A} e^{i(\lambda_{A}-\lambda_{B})\phi} \cdot \int_{-1}^{1} dx \, F_{A}(x) \, C_{A}(x;Q) \qquad (Q = \theta \text{ or } q_{T})$ [suppressing t and ξ dependence] $\mathcal{M}(Q,\phi) \simeq \sum_{A} e^{i(\lambda_{A}-\lambda_{B})\phi} \cdot \int_{-1}^{1} dx \, F_{A}(x) \, C_{A}(x;Q) \qquad (Q = \theta \text{ or } q_{T})$ [suppressing t and ξ dependence] $\mathcal{M}(Q,\phi) \simeq \sum_{A} e^{i(\lambda_{A}-\lambda_{B})\phi} \cdot \int_{-1}^{1} dx \, F_{A}(x) \, C_{A}(x;Q) \qquad (Q = \theta \text{ or } q_{T})$ [suppressing t and ξ dependence] $\mathcal{M}(Q,\phi) \simeq \sum_{A} e^{i(\lambda_{A}-\lambda_{B})\phi} \cdot \int_{-1}^{1} dx \, F_{A}(x) \, C_{A}(x;Q) \qquad (Q = \theta \text{ or } q_{T})$ [suppressing t and ξ dependence] $\mathcal{M}(Q,\phi) \simeq \sum_{A} e^{i(\lambda_{A}-\lambda_{B})\phi} \cdot \int_{-1}^{1} dx \, F_{A}(x) \, C_{A}(x;Q) \qquad (Q = \theta \text{ or } q_{T})$ [suppressing t and ξ dependence] $\mathcal{M}(Q,\phi) \simeq \sum_{A} e^{i(\lambda_{A}-\lambda_{B})\phi} \cdot \int_{-1}^{1} dx \, F_{A}(x) \, C_{A}(x;Q) = \int_{-1}^{1} dx \, G_{A}(x) \, F_{A}(x;Q) = 0$ [suppressing t and ξ dependence] $\mathcal{M}(Q,\phi) \simeq \sum_{A} e^{i(\lambda_{A}-\lambda_{B})\phi} \cdot \int_{-1}^{1} dx \, G_{A}(x) \, F_{A}(x;Q) = 0$ [suppressing t and ξ dependence] $\mathcal{M}(Q,\phi) \simeq \sum_{A} e^{i(\lambda_{A}-\lambda_{B})\phi} \cdot \int_{-1}^{1} dx \, G_{A}(x) \, F_{A}(x;Q) = 0$ [suppressing t and ξ dependence] $\mathcal{M}(Q,\phi) \simeq \sum_{A} e^{i(\lambda_{A}-\lambda_{B})\phi} \cdot \int_{-1}^{1} dx \, G_{A}(x) \, F_{A}(x;Q) = 0$ [suppressing t and ξ dependence] $\mathcal{M}(Q,\phi) \simeq \sum_{A} e^{i(\lambda_{A}-\lambda_{B})\phi} \cdot \int_{-1}^{1} dx \, G_{A}(x) \, F_{A}(x;Q) = 0$ [suppressing t and ξ dependence] $\mathcal{M}(Q,\phi) \simeq \sum_{A} e^{i(\lambda_{A}-\lambda_{B})\phi} \cdot \int_{-1}^{1} dx \, G_{A}(x) \, F_{A}(x;Q) = 0$ [suppressing t and ξ dependence]
[suppressing t and ξ dependence] $\mathcal{M}(Q,\phi) \simeq \sum_{A} e^{i(\lambda_{A}-\lambda_{B})\phi} \cdot \int_{-1}^{1} dx \, G_{A}(x) \, F_{A}(x;Q) = 0$ [suppressing t and ξ dependence]
[suppressing t and ξ de

Where does the sensitivity come from?

\Box x-sensitivity \Leftrightarrow 2 \rightarrow 2 hard scattering

Kinematics:

1.
$$\hat{s} = 2 \xi s / (1 + \xi)$$
 \leftarrow ξ
2. θ or $q_T = \sqrt{\hat{s}} \sin\theta/2$ \leftarrow x
3. ϕ \leftarrow (A^*B) spin states

Jefferson Lab

 $\mathcal{M}(Q,\phi) \simeq \sum_{A} e^{i(\lambda_{A}-\lambda_{B})\phi} \cdot \int_{-1}^{1} dx \, F_{A}(x) \, C_{A}(x;Q) \qquad (Q = \theta \text{ or } q_{T})$ [suppressing *t* and ξ dependence] $\mathcal{M}(Q,\phi) \simeq \sum_{A} e^{i(\lambda_{A}-\lambda_{B})\phi} \cdot \int_{-1}^{1} dx \, F_{A}(x) \, C_{A}(x;Q) \qquad (Q = \theta \text{ or } q_{T})$ [suppressing *t* and ξ dependence] $\mathcal{M}(Q,\phi) \simeq \sum_{A} e^{i(\lambda_{A}-\lambda_{B})\phi} \cdot \int_{-1}^{1} dx \, F_{A}(x) \, C_{A}(x;Q) \qquad (Q = \theta \text{ or } q_{T})$ [suppressing *t* and ξ dependence] $\mathcal{M}(Q,\phi) \simeq \sum_{A} e^{i(\lambda_{A}-\lambda_{B})\phi} \cdot \int_{-1}^{1} dx \, F_{A}(x) \, C_{A}(x;Q) \qquad (Q = \theta \text{ or } q_{T})$ [suppressing *t* and ξ dependence] $\mathcal{M}(Q,\phi) \simeq \sum_{A} e^{i(\lambda_{A}-\lambda_{B})\phi} \cdot \int_{-1}^{1} dx \, F_{A}(x) \, C_{A}(x;Q) \qquad (Q = \theta \text{ or } q_{T})$ [suppressing *t* and ξ dependence] $\mathcal{M}(Q,\phi) \simeq \sum_{A} e^{i(\lambda_{A}-\lambda_{B})\phi} \cdot \int_{-1}^{1} dx \, F_{A}(x) \, C_{A}(x;Q) \qquad (Q = \theta \text{ or } q_{T})$ [suppressing *t* and ξ dependence] $\mathcal{M}(Q,\phi) \simeq \sum_{A} e^{i(\lambda_{A}-\lambda_{B})\phi} \cdot \int_{-1}^{1} dx \, F_{A}(x) \, C_{A}(x;Q) \qquad (Q = \theta \text{ or } q_{T})$ [suppressing *t* and ξ dependence] $\mathcal{M}(Q,\phi) \simeq \sum_{A} e^{i(\lambda_{A}-\lambda_{B})\phi} \cdot \int_{-1}^{1} dx \, F_{A}(x) \, C_{A}(x;Q) = \int_{-1}^{1} dx \, G_{A}(x) \, F_{A}(x;Q) = \int_{-1}^{1} dx \, G_{A}(x;Q) \, F_{A}(x;Q) \, F_{A}(x;Q) = \int_{-1}^{1} dx \, G_{A}(x;Q) \, F_{A}(x$

□ Moment sensitivity in DVCS

$$i\mathcal{M} \supset \int_{-1}^{1} dx \frac{F(x,\xi,t)}{x-\xi+i\epsilon} = F_0(\xi,t)$$
$$q'^2 = 0 \quad \Longrightarrow \quad \text{Lack of external scale to probe } x$$

Moment sensitivity in DVCS

Enhanced sensitivity in DDVCS

Physically appealing, but experimentally challenging...

Two new example processes with enhanced *x*-sensitivity

J-PARC, AMBER

Qiu & Yu, JHEP 08 (2022) 103 Qiu & Yu, arXiv:2401.xxxxx

JLab Hall D

G. Duplancic et al., JHEP 11 (2018) 179
G. Duplancic et al., JHEP 03 (2023) 241
G. Duplancic et al., PRD 107 (2023), 094023
Qiu & Yu, PRD 107 (2023), 014007
Qiu & Yu, PRL 131 (2023), 161902

[Qiu & Yu, JHEP 08 (2022) 103] $\gamma(q_1)$ \vec{q}_T N(p) $\pi(p_2)$ N'(p') $q(q_2)$ q_1 \boldsymbol{x} q_2

In addition to

$$F_0(\xi, t) = \int_{-1}^{1} \frac{dx F(x, \xi, t)}{x - \xi + i\epsilon}$$

 $i\mathcal{M}$ also contains

$$I(t,\xi;z,\theta) = \int_{-1}^{1} \frac{dx F(x,\xi,t)}{x - \rho(z;\theta) + i\epsilon \operatorname{sgn}\left[\cos^2(\theta/2) - z\right]}$$

$$\rho(z;\theta) = \xi \cdot \left[\frac{1-z+\tan^2(\theta/2)z}{1-z-\tan^2(\theta/2)z}\right] \in (-\infty,-\xi] \cup [\xi,\infty)$$

Jefferson Lab

0.5

-0.5

0

 \boldsymbol{x}

1 -1

-1

-0.5

0

 \boldsymbol{x}

0.5

Exclusive Drell-Yan dilepton production

- Lower rate
- Blind to shadow GPDs

Polarization asymmetries

28

$$\frac{d\sigma}{d|t|\,d\xi\,d\cos\theta\,d\phi} = \frac{1}{2\pi} \frac{d\sigma}{d|t|d\xi\,d\cos\theta} \cdot \left[1 + \lambda_N \lambda_\gamma \,A_{LL} + \zeta \,A_{UT}\cos2\left(\phi - \phi_\gamma\right) + \lambda_N \zeta \,A_{LT}\sin2\left(\phi - \phi_\gamma\right)\right]$$
$$\frac{d\sigma}{d|t|\,d\xi\,d\cos\theta} = \pi \left(\alpha_e \alpha_s\right)^2 \left(\frac{C_F}{N_c}\right)^2 \frac{1 - \xi^2}{\xi^2 s^3} \Sigma_{UU}$$

$$\begin{split} \Sigma_{UU} &= |\mathcal{M}_{+}^{[\widetilde{H}]}|^{2} + |\mathcal{M}_{-}^{[\widetilde{H}]}|^{2} + |\widetilde{\mathcal{M}}_{+}^{[H]}|^{2} + |\widetilde{\mathcal{M}}_{-}^{[H]}|^{2}, \\ A_{LL} &= 2 \, \Sigma_{UU}^{-1} \, \mathrm{Re} \left[\mathcal{M}_{+}^{[\widetilde{H}]} \, \widetilde{\mathcal{M}}_{+}^{[H]*} + \mathcal{M}_{-}^{[\widetilde{H}]} \, \widetilde{\mathcal{M}}_{-}^{[H]*} \right], \\ A_{UT} &= 2 \, \Sigma_{UU}^{-1} \, \mathrm{Re} \left[\widetilde{\mathcal{M}}_{+}^{[H]} \, \widetilde{\mathcal{M}}_{-}^{[H]*} - \mathcal{M}_{+}^{[\widetilde{H}]} \, \mathcal{M}_{-}^{[\widetilde{H}]*} \right], \\ A_{LT} &= 2 \, \Sigma_{UU}^{-1} \, \mathrm{Im} \left[\mathcal{M}_{+}^{[\widetilde{H}]} \, \widetilde{\mathcal{M}}_{-}^{[H]*} + \mathcal{M}_{-}^{[\widetilde{H}]} \, \widetilde{\mathcal{M}}_{+}^{[H]*} \right]. \end{split}$$

Neglecting: (1) E and \widetilde{E} ; (2) gluon channel

GPD models = GK model + shadow GPDs


```
\int_{-1}^{1} \frac{dx \, S(x,\xi)}{x - \xi \pm i\epsilon} = 0
```

Goloskokov, Kroll, `05, `07, `09 Bertone et al. `21 Moffat et al. `23

Summary

□ Single Diffractive Hard Exclusive Processes (SDHEP)

- Systematic factorization.
- Roadmap for known and more new processes!

□ GPD *x* dependence is challenging

- Multi-processes, multi-observables approach
- Moment sensitivity is not sufficient
- Enhanced sensitivity
- JLab Hall D (also other halls and EIC, with good controls of quasi-real photon beams)

A long but exciting way to go!

Thank you!

BACK UP

SDHEP: two-stage paradigm and factorization

+

ERBL region: $[q\overline{q}'] \sim meson$

DGLAP region: Glauber pinch

Soft gluons cancel when coupling to (<u>color-neutral</u>) mesons!

Factorization of gluon channel

- Perturbative divergence occurs at endpoint: no phase space
- Regulated by a finite parton transverse momentum
- Collinear factorization artifact

Photoproduction at EIC?

□ Theoretical challenge: double diffractive factorization?

Both k_s^+ and $k_s^$ are pinched in Glauber region!

QED pinch: violates factorization

□ Experimental challenge: how "exclusive" can one go?

- Electron scattering induces photon radiation.
- Exclusive processes could occur only in QCD due to color singlet nature of the hadron.

A consistent theoretical formalism (& applicable experimental approach) is still unclear now.

- Hard scale Q manifest
- Cannot put Bethe-Heitler process in a coherent framework

• Hard scale q_T

