Meson production at NLO and higher-twist revisited

Kornelija Passek-K.

Rudjer Bošković Institute, Croatia

RBRC Workshop, Jan 19, 2024

1 DVMP at NLO: NLO global DIS+DVCS+DV ρ^{0} P fits

[Čuić, Duplančić, Kumerički, P-K. '23]

[Duplančić, Kroll, P-K., Szymanowski '24]

GPDs from deeply virtual exclusive processes

• DV (V_L) P:

 $\bullet\,$ data show dominance of γ_L^* contributions

 \Rightarrow twist-2 predictions can describe the data

- DVπP:
 - data show suppression of γ_L^* contributions

 \Rightarrow twist-3 γ_T^* contributions with transversity GPDs in 2-body ($\pi = q\bar{q}$) approximation [Goloskokov, Kroll '10, Goldstein, Hernandez, Liuti '13]

• DV (V_L) P:

 \bullet data show dominance of γ_L^* contributions

 \Rightarrow twist-2 predictions can describe the data

- tw2 NLO corrections available and large
 - $\Rightarrow \text{global DIS} + \text{DVCS} + \text{DVV}_L \text{P fits at NLO}$ [Čuić, Duplančić, Kumerički, P-K, '23]

DVπP:

- data show suppression of γ_L^\ast contributions

 \Rightarrow twist-3 γ_T^* contributions with transversity GPDs in 2-body ($\pi = q\bar{q}$) approximation [Goloskokov, Kroll '10, Goldstein, Hernandez, Liuti '13]

• DV (V_L) P:

 \bullet data show dominance of γ_L^* contributions

 \Rightarrow twist-2 predictions can describe the data

- tw2 NLO corrections available and large
 - $\Rightarrow \text{global DIS+DVCS+DV}_L P \text{ fits at NLO}$ [Čuić, Duplančić, Kumerički, P-K. '23]
- DVπP:
 - $\bullet\,$ data show suppression of γ_L^* contributions

 \Rightarrow twist-3 γ_T^* contributions with transversity GPDs in 2-body ($\pi = q\bar{q}$) approximation [Goloskokov, Kroll '10, Goldstein, Hernandez, Liuti '13]

• similar behaviour for wide-angle pion electroproduction ($t \gg$) but necessary 3-body tw3 contributions ($\pi = q\bar{q}g$) determined; info on tw3 pion DA from photoproduction fits [Kroll, P-K. 18', '21]

⇒ full (2- and 3-body) twist-3 contributions confronted with data [Duplančić, Kroll, P-K., Szymanowski '24]

4 / 28

DVMP at twist-2 NLO

DVMP to NLO

NLO DV PS^+ prod.: [Belitsky and Müller '01] NLO DV V_L prod.: [Ivanov et al '04,] NLO DV V_L (corr.), PS, (S, PV_L) prod.: [Duplančić, Müller, P-K. '17]

DVMP to NLO

- only few DVMP phenomenological analysis to NLO: [Belitsky and Müller '01], [Diehl, Kugler '07] and [Müller, Lautenschläger, P-K., Schäfer '14, Duplančić, Müller, P-K., '17], [Lautenschlager, Müller, Schäfer '13, unpublished]
- large NLO corrections and model dependence
- GPD evolution important
- NLO global DIS+DVCS+DVMP fits needed

From momentum fraction to CPaW formalism

DVCS: Compton form factors

$$\mathcal{F}^{a}(\xi,t,Q^{2}) = \int \mathrm{d}x \; T^{a}(x,\xi,Q,\mu_{F};\mu_{R}) F^{a}(x,\xi,t,\mu_{F}) \; \left| \; a=q,G \text{ or NS,S} \right|$$

DVMP: Transition form factors

$$\mathcal{F}_{M}^{a}(\xi, t, Q^{2}) = \int \mathrm{d}x \int \mathrm{d}u \ T^{M,a}(x, \xi, u, \ldots) \ F^{a}(x, \xi, t, \mu_{F}) \ \phi_{M}(u, \mu_{\varphi})$$

 F^a ... GPD, ϕ_M ... DA, T^a ... hard-scattering amplitude

From momentum fraction to CPaW formalism

DVCS: Compton form factors

$$\left| \mathcal{F}^a(\xi,t,Q^2) = \int \mathrm{d}x \; T^a(x,\xi,Q,\mu_F;\mu_R) \, F^a(x,\xi,t,\mu_F) \; \right| \; a = q,G \text{ or NS,S}$$

DVMP: Transition form factors $\mathcal{F}_{M}^{a}(\xi, t, Q^{2}) = \int \mathrm{d}x \int \mathrm{d}u \ T^{M,a}(x, \xi, u, \dots) F^{a}(x, \xi, t, \mu_{F}) \phi_{M}(u, \mu_{\varphi})$ $F^{a} \dots \text{GPD, } \phi_{M} \dots \text{DA, } T^{a} \dots \text{hard-scattering amplitude}$

• conformal partial wave expansion: $C_n^{3/2}(x)$ (quarks), $C_n^{5/2}(x)$ (gluons) $F_j^q(\xi, \ldots) = \frac{\Gamma(3/2)\Gamma(j+1)}{2^{j+1}\Gamma(j+3/2)} \int_{-1}^1 \mathrm{d}x \; \xi^{j-1} C_j^{3/2}(x/\xi) F^q(x,\xi,\ldots), \ldots, \; T_j^a, \; T_{j,k}^{M,a}$

From momentum fraction to CPaW formalism

DVCS: Compton form factors

$$\mathcal{F}^{a}(\xi,t,Q^{2}) = \int \mathrm{d}x \; T^{a}(x,\xi,Q,\mu_{F};\mu_{R}) \, F^{a}(x,\xi,t,\mu_{F}) \; \left| \; a = q,G \text{ or NS,S} \right|$$

DVMP: Transition form factors $\mathcal{F}_{M}^{a}(\xi, t, Q^{2}) = \int \mathrm{d}x \int \mathrm{d}u \ T^{M,a}(x, \xi, u, \dots) F^{a}(x, \xi, t, \mu_{F}) \phi_{M}(u, \mu_{\varphi})$ $F^{a} \dots \text{GPD, } \phi_{M} \dots \text{DA, } T^{a} \dots \text{hard-scattering amplitude}$

- conformal partial wave expansion: $C_n^{3/2}(x)$ (quarks), $C_n^{5/2}(x)$ (gluons) $F_j^q(\xi, \ldots) = \frac{\Gamma(3/2)\Gamma(j+1)}{2^{j+1}\Gamma(j+3/2)} \int_{-1}^1 \mathrm{d}x \; \xi^{j-1} C_j^{3/2}(x/\xi) F^q(x,\xi,\ldots), \ldots, \; T_j^a, \; T_{j,k}^{M,a}$
 - series summed using Mellin-Barnes integral over complex j

$$\int_{-1}^{1} \frac{dx}{2\xi} \to 2\sum_{j=0}^{\infty} \xi^{-j-1} \to \frac{1}{2i} \int_{c-i\infty}^{c+i\infty} dj \ \xi^{-j-1} \left[i \pm \left\{ \begin{array}{c} \tan \\ \cot \end{array} \right\} \left(\frac{\pi j}{2} \right) \right] \equiv \overset{j}{\otimes}$$

Müller '06, Müller, Schäfer '06]

CPaW formalism for DVCS and DVMP to NLO

[Kumerički, Müller, P-K., Schäfer '07:

"Towards a fitting procedure for DVCS at NLO and beyond"]

 $\mathcal{F}^{a}(\xi,t,Q^{2}) = T^{a}_{j}(Q,\mu) \overset{j}{\otimes} \mathbb{E}^{a}_{jl}(\mu,\mu_{0};\xi) \overset{l}{\otimes} F^{a}_{l}(\xi,t,\mu_{0})$

- T_j^a and GPD evolution (\mathbb{E}) to NLO
- application to NNLO ready
- modeling GPD moments: t-chanel SO(3) partial waves

[Müller, Lautenschläger, P-K., Schäfer '14:

"Towards a fitting procedure to DVMP - the NLO case"] [Duplančić, Müller, P-K. '17] • $T_{j,k}^{M,a}$ to NLO for $M = V_L, P, (S, PV_L)$

CPaW formalism for DVCS and DVMP to NLO

[Kumerički, Müller, P-K., Schäfer '07:

"Towards a fitting procedure for DVCS at NLO and beyond"]

 $\mathcal{F}^{a}(\xi,t,Q^{2}) = T^{a}_{j}(Q,\mu) \overset{j}{\otimes} \mathbb{E}^{a}_{jl}(\mu,\mu_{0};\xi) \overset{l}{\otimes} F^{a}_{l}(\xi,t,\mu_{0})$

- T_j^a and GPD evolution (\mathbb{E}) to NLO
- application to NNLO ready
- modeling GPD moments: t-chanel SO(3) partial waves

[Müller, Lautenschläger, P-K., Schäfer '14:

"Towards a fitting procedure to DVMP - the NLO case"] [Duplančić, Müller, P-K. '17] • $T_{j,k}^{M,a}$ to NLO for $M = V_L, P, (S, PV_L)$

 \rightarrow Gepard software [Kumerički '22 on github]

→ compendium [Čuić, Duplančić, Kumerički, P-K. '23]

CPaW formalism for DVCS and DVMP to NLO

[Kumerički, Müller, P-K., Schäfer '07:

"Towards a fitting procedure for DVCS at NLO and beyond"]

 $\mathcal{F}^{a}(\xi,t,Q^{2}) = T^{a}_{j}(Q,\mu) \overset{j}{\otimes} \mathbb{E}^{a}_{jl}(\mu,\mu_{0};\xi) \overset{l}{\otimes} F^{a}_{l}(\xi,t,\mu_{0})$

- T_j^a and GPD evolution (\mathbb{E}) to NLO
- application to NNLO ready
- modeling GPD moments: t-chanel SO(3) partial waves

[Müller, Lautenschläger, P-K., Schäfer '14:

"Towards a fitting procedure to DVMP - the NLO case"] [Duplančić, Müller, P-K. '17] • $T_{j,k}^{M,a}$ to NLO for $M = V_L, P, (S, PV_L)$

 \rightarrow Gepard software [Kumerički '22 on github]

→ compendium [Čuić, Duplančić, Kumerički, P-K. '23]

Advantages: easy evolution, interesting GPD modeling, moments accessible on lattice, stable numerics and efficient fitting

 \rightarrow see also X. Ji and G. Santiago talks

small-x global fits to HERA collider data (ρ_0)

- only NLO predecessor: [Lautenschlager, Müller, Schäfer '13 unpublished]
- hard scattering amplitude corrected [Duplančić, Müller, P-K. '17]
- new NLO fit [Čuić, Duplančić, Kumerički, P-K. '23]: improved treatment of experimental data

small-x global fits to HERA collider data (ρ_0)

- only NLO predecessor: [Lautenschlager, Müller, Schäfer '13 unpublished]
- hard scattering amplitude corrected [Duplančić, Müller, P-K. '17]
- new NLO fit [Čuić, Duplančić, Kumerički, P-K. '23]: improved treatment of experimental data

GPD model: [Kumerički, Müller, P-K., Schäfer '07, Kumerički, Müller '10]

•
$$H_j^a(\xi, t) = q_j^a \frac{1+j-\alpha_0^a}{1+j-\alpha_0^a-\alpha'^a t} \left(1-\frac{t}{m_a^2}\right)^{-2} \left(1+s_2^a \xi^2+s_4^a \xi^4\right)$$

 $q_j^a = N_a \frac{B(1-\alpha_0^a+j,\beta^a+1)}{B(2-\alpha_0^a,\beta^a+1)}$

• small-x kinematics $\Rightarrow a \in \{sea, G\}$, only dominant H GPD

Fit parameters:

• DIS: $\{N_{sea}, \alpha_0^{sea}, \alpha_0^{\mathsf{G}}\}$ • DVCS+DVMP: $\{\alpha'^{sea}, \alpha'^{\mathsf{G}}, m_{sea}^2, m_{\mathsf{G}}^2, s_2^{sea}, s_2^{\mathsf{G}}, s_4^{sea}, s_4^{\mathsf{G}}\}$

may seem trivial, but not all popular models describe DIS

Dataset	Refs.	$n_{\rm pts}$	L0-			NLO-		
			DVCS	DVMP	DVCS-DVMP	DVCS	DVMP	DVCS-DVMP
DIS	[90]	85	0.6	0.6	0.6	0.8	0.8	0.8
DVCS	[92 - 95]	27	0.4	$\gg 1$	0.6	0.6	$\gg 1$	0.8
DVMP	[88, 89]	45	$\gg 1$	3.1	3.3	$\gg 1$	1.5	1.8
Total		157	$\gg 1$	$\gg 1$	1.4	3.7	$\gg 1$	1.1

Table 3. Values of $\chi^2/n_{\rm pts}$ for each LO or NLO model (columns) for the total DIS + DVCS + DVMP dataset and for subsets corresponding to different processes (rows). (The values denoted by $\gg 1$ are greater than 10.).

NLO DVCS-DVMP fit describes the data well

 \bullet successful description of Q^2 dependence

quark-gluon structure? LO NLO 1.4 $x_B = 0.001$ £ 0.8 0.6 0.4 0.2 gluor Q^2 [GeV²] Q^2 [GeV²] 15 LO NLO 1.0 LO NLO $x_{\rm m} = 0.001$ xn = 0.0010.5 $_{\mathcal{I}^{n}}\mathfrak{I}_{\mathcal{H}}\mathfrak{M}_{\mathcal{H}_{\mathcal{H}}}\mathfrak{L}_{\mathcal{H}}$ HmC -0.5quarl ghion LO NLO 1.0 LO NLO 0.3 $x_B \Re \epsilon \mathcal{H}_{s_L}$ $x_{\rm B}$ ReH -0.320 20 Q^2 [GeV²] $Q^2 \, [GeV^2]$ Q^2 [GeV²] Q^2 [GeV²]

- conformal (Shuvaev) values (PDFs completely specified by GPDs): $r^q \approx 1.65, \ r^G \approx 1,$
- r measures goodness of GPD extraction \Rightarrow NLO fit successful

DVMP at higher-twist

DVMP to twist-3

 μ photon helicity, $\lambda \dots$ quark helicities

 $\mathcal{H}^{\pi}_{0\lambda,\mu\lambda}$... non-flip subprocess amplitudes (twist-2)

 $\mathcal{H}^{\pi}_{0-\lambda,\mu\lambda}$... flip subprocess amplitudes (twist-3)

Note: just meson DA tw-3 contributions ($\mu_{\pi} = 2 \text{ GeV}$)

 \rightarrow see J. Zhou talk

distribution amplitudes (DAs):

twist-2 $(q\bar{q})$: ϕ_{π} 2-body $(q\bar{q})$ twist-3 $\phi_{\pi p}$, $\phi_{\pi \sigma}$ 3-body $(q\bar{q}g)$ twist-3 $\phi_{3\pi}$ \rightarrow connected by equations of motion (EOMs)

20 / 28

 $\begin{bmatrix} \text{Duplančić, Kroll, P-K., Szymanowski '24} \end{bmatrix}$ $\mathcal{H}^{\pi,tw3} = \mathcal{H}^{P,tw3,q\bar{q}} + \mathcal{H}^{P,tw3,q\bar{q}g}$ $= (\mathcal{H}^{P,\phi_{P_{p}}} + \underbrace{\mathcal{H}^{P,\phi_{P_{2}}^{EOM}}}_{}) + (\mathcal{H}^{P,q\bar{q}g,C_{F}}_{} + \mathcal{H}^{P,q\bar{q}g,C_{G}})$ $= \mathcal{H}^{\pi,\phi_{P_{p}}} + \mathcal{H}^{\pi,\phi_{3P},C_{F}} + \mathcal{H}^{\pi,\phi_{3P},C_{G}}$

• 2- and 3-body contributions necessary for gauge invariance

[Duplančić, Kroll, P-K., Szymanowski '24] $\mathcal{H}^{\pi,tw3} = \mathcal{H}^{P,tw3,q\bar{q}} + \mathcal{H}^{P,tw3,q\bar{q}g}$ $= (\mathcal{H}^{P,\phi_{P_{p}}} + \underbrace{\mathcal{H}^{P,\phi_{P_{2}}^{EOM}}}_{P,q^{2}}) + (\mathcal{H}^{P,q\bar{q}g,C_{F}} + \mathcal{H}^{P,q\bar{q}g,C_{G}})$ $= \mathcal{H}^{\pi,\phi_{P_{p}}} + \mathcal{H}^{\pi,\phi_{3P},C_{F}} + \mathcal{H}^{\pi,\phi_{3P},C_{G}}$

• 2- and 3-body contributions necessary for gauge invariance • end-point singularities in $\mathcal{H}^{\pi,\phi_{\pi p}}$: $\int^1 \frac{d\tau}{d\tau} \phi_{\pi n}(\tau) = \frac{1}{\sqrt{2\pi}} \bigotimes^x H_T(t)$

and-point singularities in
$$\mathcal{H}^{\tau,\tau,\pi,p}$$
:
$$\int_{0}^{\infty} \frac{\overline{\tau}}{\overline{\tau}} \phi_{\pi p}(\tau) \frac{1}{(x-\xi+i\epsilon)^{2}} \otimes H_{T}(E_{T})$$
$$\phi_{Pp}(\tau) = 1 + a_{Pp} C_{2}^{1/2}(2\tau-1) + \dots$$

 $\begin{bmatrix} \text{Duplančić, Kroll, P-K., Szymanowski '24} \end{bmatrix}$ $\mathcal{H}^{\pi,tw3} = \mathcal{H}^{P,tw3,q\bar{q}} + \mathcal{H}^{P,tw3,q\bar{q}g}$ $= (\mathcal{H}^{P,\phi_{P_{p}}} + \underbrace{\mathcal{H}^{P,\phi_{P_{2}}^{EOM}}}_{}) + (\mathcal{H}^{P,q\bar{q}g,C_{F}}_{} + \mathcal{H}^{P,q\bar{q}g,C_{G}})$ $= \mathcal{H}^{\pi,\phi_{P_{p}}} + \mathcal{H}^{\pi,\phi_{3P},C_{F}} + \mathcal{H}^{\pi,\phi_{3P},C_{G}}$

• 2- and 3-body contributions necessary for gauge invariance • end-point singularities in $\mathcal{H}^{\pi,\phi_{\pi p}}$: $\int_{0}^{1} \frac{d\tau}{\bar{\tau}} \phi_{\pi p}(\tau) \frac{1}{(x-\xi+i\epsilon)^{2}} \overset{x}{\otimes} H_{T}(\bar{E}_{T})$ $\phi_{Pp}(\tau) = 1 + a_{Pp} C_{2}^{1/2}(2\tau-1) + \dots$

 \Rightarrow modified perturbative approach (MPA) (with k_{\perp} quark transverse momenta) as in [Goloskov, Kroll, '10])

$$\Rightarrow \text{ pure collinear picture with effective } m_g^2 \\ \int_{\Omega}^{1} d\tau \phi_{\pi p}(\tau) \frac{1}{((x-\xi)\bar{\tau} - m_g^2(2\xi)/Q^2 + i\epsilon)} \frac{1}{(x-\xi+i\epsilon)} \overset{x}{\otimes} H_T(\bar{E}_T)$$

0

Results from photoproduction (π)

• complete tw-3 prediction for π_0 photoproduction fitted to CLAS data

$$\Rightarrow \phi_{3\pi}$$
 coefficients $\omega_{1,0}$, $\omega_{2,0}$, $\omega_{1,1}$ (set 2)

solid curve: tw2+(tw3 $\phi_{3\pi}$ set1) dashed curve: tw2+(tw3 $\phi_{3\pi}$ set2)

exp data: full circles [SLAC '76]

MPA $d\sigma_{TT}$

MPA $d\sigma_U$

solid curves: tw3 set 1 dashed curves: tw3 set 2 ("KPK")

exp data: full circles [CLAS '14] triangles [Hall A '20] open circles [COMPASS '19]

$$\frac{d\sigma_U}{dt} = \frac{d\sigma_T}{dt} + \epsilon \frac{d\sigma_L}{dt}$$

24 / 28

Collinear approach with m_g^2 : $d\sigma_{TT}$

purple solid curves: tw3 set 1 thin solid curves: tw3 set 2 ("KPK") orange dashed curves: tw3 WW

exp data: full circles [CLAS '14] triangles [Hall A '20]

$$m_g^2(Q^2) = \frac{m_0^2}{1 + (Q^2/M^2)^{1+p}}$$

Collinear approach with m_g^2 : $d\sigma_U$

 $\begin{array}{l} \mbox{purple solid curves:} \\ \mbox{tw2} + \mbox{tw3 set 1} \\ \mbox{thin solid curves:} \\ \mbox{tw2} + \mbox{tw3 set 2} \\ \mbox{orange dashed curves:} \\ \mbox{tw2} + \mbox{tw3 WW} \end{array}$

red curves: tw2 blue curves: tw3

exp data: full circles [CLAS '14] triangles [Hall A '20] open circles [COMPASS '19]

• twist-2 contribution significant for COMPASS kinematics (small-x)

Collinear approach with m_g^2

• 3-body contributions smaller but may influence the Q^2 behaviour

Concluding remarks

- $\mathrm{DV}\rho_L^0\mathrm{P}$
 - Twist-2 NLO contributions can describe the data.
 - Global DIS+DVCS+DVMP fits show importance of NLO.
 - DVMP can only be described at NLO.
- DVπ⁰P
 - The improved twist-3 analysis (2- and 3-body meson Fock states included) shows that twist-3 dominates except for COMPASS kinematics (small x_B).
- Meson production promising in accessing information about GPDs.
- Meson DA additional nontrivial nonperturbative input.
- Clear separation of σ_L and σ_T needed from experiment.

Concluding remarks

- $\bullet \ \mathsf{DV}\rho^0_L\mathsf{P}$
 - Twist-2 NLO contributions can describe the data.
 - Global DIS+DVCS+DVMP fits show importance of NLO.
 - DVMP can only be described at NLO.
- $DV\pi^0P$
 - The improved twist-3 analysis (2- and 3-body meson Fock states included) shows that twist-3 dominates except for COMPASS kinematics (small x_B).
- Meson production promising in accessing information about GPDs.
- Meson DA additional nontrivial nonperturbative input.
- Clear separation of σ_L and σ_T needed from experiment.

Thank you.

Generalized Parton Distributions

 $\begin{array}{ll} x & \mbox{parton's "average" longitudinal momentum fraction} \\ \xi = -\frac{\Delta^+}{P^+} & \mbox{longitudinal momentum transfer (skewness)} \\ \Delta^2 = t & \mbox{momentum transfer} \end{array}$

GPDs:
$$\left| F^a(x,\xi,t;\mu), \ a\in\{q,G\} \right|$$

 μ ... factorization scale

- vector (H^a, E^a) and axial-vector GPDs $(\widetilde{H}^a, \widetilde{E}^a)$
- transversity GPDs (H_T^a , E_T^a , \widetilde{H}_T^a , \widetilde{E}_T^a)

Meson Production: handbag factorization

WIDE ANGLE -t, -u, s >>

[Collins, Frankfurt, Strikman '97]

- factorization $\mathcal{H}^a \otimes GPD$
- GPDs at small (-t)

WAMP

[Huang, Kroll '00]

• arguments for factorization $\mathcal{H}^{a}(1/x \otimes GPD(\xi = 0))$

• GPDs at large
$$(-t)$$

 \mathcal{H}^a ... parton subprocess helicity amplitudes $\Rightarrow \mathcal{M}$... hadron helicity amplitudes \Rightarrow observables (cross sections, asymmetries)

Meson Production: handbag factorization

DEEPLY VIRTUAL $Q^2 >>$, -t <<

DVMP

WIDE ANGLE -t, -u, s >>

• GPDs at small (-t)

• tw2: γ_L^* , tw3: γ_T^*

[Huang, Kroll '00]

WAMP

• arguments for factorization $\mathcal{H}^{a}(1/x \otimes GPD(\xi = 0))$

• GPDs at large
$$(-t)$$

large scale Q^2 (Q^2 , s or ...) • twist expansion: $\langle \mathcal{H} \rangle^{tw2} + \frac{\langle \mathcal{H} \rangle^{tw3}}{Q} + ...$ • α_S expansion for each twist: $\alpha_S(Q) \langle \mathcal{H} \rangle^{LO} + \alpha_S^2(Q) \langle \mathcal{H} \rangle^{NLO}$

Photoproduction (π)

• complete tw-3 prediction for π_0 photoproduction fitted to CLAS data and obtained predictions for π^{\pm}

twist-2 prediction well below the data

General structure:

$$\mathcal{H}^{P,tw3} = \mathcal{H}^{P,tw3,q\bar{q}} + \mathcal{H}^{P,tw3,q\bar{q}g}$$

= $(\mathcal{H}^{P,\phi_{P_{p}}} + \mathcal{H}^{P,\phi_{P_{2}}^{EOM}}) + (\mathcal{H}^{P,q\bar{q}g,C_{F}} + \mathcal{H}^{P,q\bar{q}g,C_{G}})$
= $\mathcal{H}^{P,\phi_{P_{p}}} + \mathcal{H}^{P,\phi_{3P},C_{F}} + \mathcal{H}^{P,\phi_{3P},C_{G}}$

• 2- and 3-body contributions necessary for gauge invariance

• WAMP

- photoproduction ($Q \rightarrow 0$): $\mathcal{H}^{P,\phi_{Pp}} = 0$ [Kroll, P-K '18]
- no end-point singularities for $\hat{t} \neq 0$!

- DV (V_L) P:
 - tw-2 predictions $(\underline{\gamma_L^*N \to V_LN'})$ can describe the data
 - tw-3 calculations $(\gamma^*_TN o V_{L,T}N')$ [Anikin, Teryaev '02], [Golosk., Kroll '13]
- DV (PS) P:
 - tw-2 predictions $(\underline{\gamma_L^* N \to \pi N'})$ bellow the data [HERMES '09] [JLab '12,'16, '20] [COMPAS '19] \Rightarrow importance of $\gamma_T^* N \to \pi N'$
 - $\Rightarrow \text{ tw-3 calculations } (\gamma_T^*N \to \pi N') \text{ with transversity (chiral-odd) GPDs} (H_T^q...) \text{ [Goloskokov, Kroll '10] (2-body, i.e., WW approximation), [Ahmad, Goldstein Liuti '09, Goldstein, Hernandez, Liuti '13]}$
- WA (PS) P:
 - tw-2 results [Huang, Kroll '00] bellow the data [SLAC '76], [JLab '05, '18] for photoproduction ($Q^2=0)$
 - tw-3 2-body π photoproduction vanishes [Huang, Jakob, Kroll, P-K '03]
 - ⇒ tw-3 (2- and 3-body) prediction to π_0 photoproduction [Kroll, P-K '18] fitted to CLAS data [CLAS '18]; photoproduction of η, η' mesons [Kroll, P-K. '22] [preliminary GlueX '20]
 - ⇒ tw-3 prediction for π^{\pm}, π^{0} photo- and electroproduction ($Q^{2} < -t$) [Kroll, P-K. '21]; extension to DV (PS) P

Subprocess amplitudes \mathcal{H} : projectors

$$\begin{split} q\bar{q} & \rightarrow \pi \text{ projector} & [\text{Beneke, Feldmann '00}] \\ & (\tau q' + k_{\perp}) + (\bar{\tau}q' - k_{\perp}) = q' \\ \mathcal{P}_2^{\pi} & \sim & f_{\pi} \left\{ \gamma_5 q' \phi_{\pi}(\tau, \mu_F) \right. \\ & + \mu_{\pi}(\mu_F) \Big[\gamma_5 \phi_{\pi p}(\tau, \mu_F) \\ & - \frac{i}{6} \gamma_5 \sigma_{\mu\nu} \frac{q'^{\mu} n^{\nu}}{q' \cdot n} \phi'_{\pi\sigma}(\tau, \mu_F) \\ & + \frac{i}{6} \gamma_5 \sigma_{\mu\nu} q'^{\mu} \phi_{\pi\sigma}(\tau, \mu_F) \frac{\partial}{\partial k_{+\mu}} \Big] \Big\}_{k_{\perp} \to 0} \end{split}$$

$$\begin{split} q\bar{q}g &\rightarrow \pi \text{ projector} & [\text{Kroll, P-K '18]} \\ \tau_a q' + \tau_b q' + \tau_g q' = q' \\ \mathcal{P}_3^{\pi} &\sim f_{3\pi}(\mu_F) \, \frac{i}{g} \, \gamma_5 \, \sigma_{\mu\nu} q'^{\mu} g_{\perp}^{\nu\rho} \, \frac{\phi_{3\pi}(\tau_a, \tau_b, \tau_g, \mu_F)}{\tau_g} \end{split}$$

 $\mu_{\pi}=m_{\pi}^2/(m_u+m_d)\cong 2$ GeV, $f_{3\pi}\sim \mu_{\pi}$

NLO for DV V_L production

Fig. 6. Relative NLO corrections to the imaginary part of the flavor singlet TFF \mathcal{F}_{V}^{S} (solid) broken down to the gluon (dashed), pure singlet quark (dash-dotted) and 'non-singlet' quark (dotted) at t = 0 GeV² (left panel) and t = -0.5 GeV² (right panel) at the initial scale $\mathcal{Q}_{0}^{2} = 4$ GeV².

[Müller, Lautenschlager, P-K., Schäfer '14]

• large NLO corrections for small x_B , i.e., ξ