Double DVCS (... and 2γ exclusive production) - prospect for measurements

Jakub Wagner

National Centre for Nuclear Research, Warsaw

RBRC Workshop on Generalized Parton Distributions for Nucleon Tomography in the EIC Era

BNL, Jan 17 - 19, 2024

DVCS and other exclusive processes

- DVCS
 - is a main source of info about GPDs
 - a lot of activity on theory, exp, pheno side
 - rich plans for JLAB and EIC
- Other processes proposed and measured
 - Timelike Compton Scattering
 - Light meson production
 - Heavy meson production

Figure 1: Kinematics of heavy vector meson photoproduction.

- All those processes (at least at LO) are sensitive only to $x=\xi$ line
- Non-invertability (Shadow GPDs and shedding light on them)

 \longrightarrow P. Sznajder talk

- Another possible source of information about $x \neq \xi$ lattice
- Other ideas: processes with more particles in the final states.

 $\longrightarrow \mathsf{Z}.\mathsf{Yu} \ \mathsf{talk}$

• Possible problems with factorization in the gluon exchange chanell reported recently:

→ Nabeebaccus, Schönleber, Szymanowski, Wallon - 2311.09146

DDVCS

• Simplest:

Double Deeply Virtual Compton Scattering (DDVCS): $\gamma N \rightarrow l^+ l^- N'$

• Proposed in:

Belitsky & Muller, PRL 90, 022001 (2003) Guidal & Vanderhaeghen, PRL 90, 012001 (2003) Belitsky & Muller, PRD 68, 116005 (2003)

• No problems with factorization.

First step - timelike DVCS

Berger, Diehl, Pire, 2002

Timelike Compton Scattering (TCS): $\gamma N \rightarrow l^+ l^- N'$

Why TCS:

- universality of the GPDs
- another source for GPDs (special sensitivity on real part of GPD H)
- first step towards DDVCS
- spacelike-timelike crossing (different analytic structure cut in Q^2)

D.Mueller, B.Pire, L.Szymanowski, J.Wagner, Phys.Rev.D86, 2012.

Thanks to simple spacelike-to-timelike relations, we can express the timelike CFFs by the spacelike ones in the following way:

$$\begin{split} ^{T}\mathcal{H} & \stackrel{\mathrm{LO}}{=} \quad {}^{S}\mathcal{H}^{*} \,, \\ ^{T}\widetilde{\mathcal{H}} & \stackrel{\mathrm{LO}}{=} \quad -{}^{S}\widetilde{\mathcal{H}}^{*} \,, \\ ^{T}\mathcal{H} & \stackrel{\mathrm{NLO}}{=} \quad {}^{S}\mathcal{H}^{*} - i\pi \, \mathcal{Q}^{2} \frac{\partial}{\partial \mathcal{Q}^{2}} {}^{S}\mathcal{H}^{*} \,, \\ ^{T}\widetilde{\mathcal{H}} & \stackrel{\mathrm{NLO}}{=} \quad -{}^{S}\widetilde{\mathcal{H}}^{*} + i\pi \, \mathcal{Q}^{2} \frac{\partial}{\partial \mathcal{Q}^{2}} {}^{S}\widetilde{\mathcal{H}}^{*} \,. \end{split}$$

The corresponding relations exist for (anti-)symmetric CFFs \mathcal{E} ($\widetilde{\mathcal{E}}$).

O. Grocholski, H. Moutarde, B. Pire, P. Sznajder, J. Wagner, Eur.Phys.J. C80 (2020)

Imaginary (left) and real (right) part of DVCS (up) and TCS (down) CFF for $Q^2 = 2 \text{ GeV}^2$ and $t = -0.3 \text{ GeV}^2$ as a function of ξ . The shaded red (dashed blue) bands correspond to the data-driven predictions coming from the ANN global fit of DVCS data and they are evaluated using LO (NLO) spacelike-to-timelike relations. The dashed (solid) lines correspond to the GK GPD model evaluated with LO (NLO) coefficient functions.

Circular asymmetry

The photon beam circular polarization asymmetry:

$$A_{CU} = \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-} \sim Im(H)$$

Circular asymmetry A_{CU} evaluated with LO and NLO spacelike-to-timelike relations for $Q'^2 = 4 \text{ GeV}^2$, $t = -0.1 \text{ GeV}^2$ and (left) $E_{\gamma} = 10 \text{ GeV}$ as a function of ϕ (right) and $\phi = \pi/2$ as a function of ξ . The cross sections used to evaluate the asymmetry are integrated over $\theta \in (\pi/4, 3\pi/4)$.

• First measurement: P. Chatagnon et al. (CLAS), PRL 127, 262501 (2021)

PHYSICAL REVIEW LETTERS 127, 262501 (2021)

First Measurement of Timelike Compton Scattering

P. Chatagnon Q^{20,*} S. Niccolai,²⁰ S. Stepanyan,³⁶ M. J. Amaryan,²⁹ G. Angelini,¹² W. R. Armstrong,¹ H. Atac,¹³ C. Ayerbe Gayoso,^{44,1} N. A. Baltzell,¹⁰ L. Barion,¹³ M. Bashkanov,¹⁰ M. Battaglieri,^{36,13} I. Bedinskiy,²⁵ F. Bennokhtar,⁷ A. Bianconi,³⁰ P. Biondo,¹³ M. A. S. Bisiell,¹⁴ M. Bondi,¹⁵ C. Bosshà,³ S. Boiarinov,³⁶ W. J. Brisco,¹² W. K. Brocks,^{27,26}

 $\bullet\,$ TCS has the same final state as $J/\psi,$ already measured in UPCs! LHCb, CMS, ALICE, AFTER

$$\sigma^{AB} = \int dk_A \frac{dn^A}{dk_A} \sigma^{\gamma B}(W_A(k_A)) + \int dk_B \frac{dn^B}{dk_B} \sigma^{\gamma A}(W_B(k_B))$$

Measurement of TCS should also make us more optimistic about DDVCS!

Double DVCS

Double Deeply Virtual Compton Scattering (DDVCS): $\gamma N \rightarrow l^+ l^- N'$

$$\gamma^*(q_{in})N(p) \to \gamma^*(q_{out})N'(p')$$

Variables, describing the processes of interest in this generalized Bjorken limit, are the scaling variable ξ and skewness $\eta > 0$:

$$\xi = -\frac{q_{out}^2 + q_{in}^2}{q_{out}^2 - q_{in}^2}\eta, \quad \eta = \frac{q_{out}^2 - q_{in}^2}{(p + p') \cdot (q_{in} + q_{out})}$$

 $\begin{array}{ll} \bullet \mbox{ DDVCS: } & q_{in}^2 < 0 \,, \quad q_{out}^2 > 0 \,, \quad \eta \neq \xi \\ \bullet \mbox{ DVCS: } & q_{in}^2 < 0 \,, \quad q_{out}^2 = 0 \,, \quad \eta = \xi > 0 \\ \bullet \mbox{ TCS: } & q_{in}^2 = 0 \,, \quad q_{out}^2 > 0 \,, \quad \eta = -\xi > 0 \end{array}$

Coefficient functions and Compton Form Factors

CFFs are the GPD dependent quantities which enter the amplitudes. They are defined through relations:

$$\begin{aligned} \mathcal{A}^{\mu\nu}(\xi,\eta,t) &= -e^2 \frac{1}{(P+P')^+} \,\bar{u}(P') \Bigg[g_T^{\mu\nu} \left(\mathcal{H}(\xi,\eta,t) \,\gamma^+ + \mathcal{E}(\xi,\eta,t) \,\frac{i\sigma^{+\rho}\Delta_{\rho}}{2M} \right) \\ &+ i\epsilon_T^{\mu\nu} \left(\widetilde{\mathcal{H}}(\xi,\eta,t) \,\gamma^+\gamma_5 + \widetilde{\mathcal{E}}(\xi,\eta,t) \,\frac{\Delta^+\gamma_5}{2M} \right) \Bigg] u(P) \,, \end{aligned}$$

,where:

$$\begin{aligned} \mathcal{H}(\xi,\eta,t) &= + \int_{-1}^{1} dx \left(\sum_{q} T^{q}(x,\xi,\eta) H^{q}(x,\eta,t) + T^{g}(x,\xi,\eta) H^{g}(x,\eta,t) \right) \\ \widetilde{\mathcal{H}}(\xi,\eta,t) &= - \int_{-1}^{1} dx \left(\sum_{q} \widetilde{T}^{q}(x,\xi,\eta) \widetilde{H}^{q}(x,\eta,t) + \widetilde{T}^{g}(x,\xi,\eta) \widetilde{H}^{g}(x,\eta,t) \right). \end{aligned}$$

• DVCS vs TCS

$$^{DVCS}T^q = -e_q^2 \frac{1}{x+\eta-i\varepsilon} - (x \to -x) = ({}^{TCS}T^q)^*$$

$$^{DVCS}\tilde{T}^q = -e_q^2 \frac{1}{x+\eta-i\varepsilon} + (x \to -x) = -({}^{TCS}\tilde{T}^q)^*$$

$${}^{DVCS}Re(\mathcal{H}) \sim P \int \frac{1}{x \pm \eta} H^q(x,\eta,t) , \quad {}^{DVCS}Im(\mathcal{H}) \sim i\pi H^q(\pm \eta,\eta,t)$$

DDVCS

$${}^{DDVCS}T^q = -e_q^2 \frac{1}{x+\xi-i\varepsilon} - (x \to -x)$$

$${}^{DDVCS}Re(\mathcal{H}) \sim P \int \frac{1}{x\pm\xi} H^q(x,\eta,t) , \quad {}^{DVCS}Im(\mathcal{H}) \sim i\pi H^q(\pm\xi,\eta,t)$$

DDVCS can provide unique information, but is very challenging experimentally. But recent measurement of TCS should also make us more optimistic about DDVCS!

We need muon detection!

DDVCS - our calculation

Deja, Martínez-Fernández, Pire, Sznajder, JW, PRD 107 (2023)

- In the view of new experiments, revisiting DDVCS is timely
- DDVCS is a subprocess in the electroproduction of a lepton pair

(from left to right) DDVCS, BH1, BH2.

- Rederivation of DDVCS formulae via Kleiss-Stirling's methods:
 - Direct calculation of amplitudes
 - 2 scalars as building blocks, a and b as light-like vectors:

$$\begin{split} s(a,b) &= \bar{u}(a,+)u(b,-) = -s(b,a) \\ t(a,b) &= \bar{u}(a,-)u(b,+) = [s(b,a)]^* \\ s(a,b) &= (a^2 + ia^3) \sqrt{\frac{b^0 - b^1}{a^0 - a^1}} - (a \leftrightarrow b) \end{split}$$

Kleiss & Stirling, Nuclear Physics B262 (1985) 235-262

DDVCS subprocess à la Kleiss-Stirling

• DDVCS subprocess amplitude:

$$i\mathcal{M}_{\rm DDVCS} = \frac{-ie^4}{(Q^2 - i0)(Q'^2 + i0)} \left(i\mathcal{M}_{\rm DDVCS}^{(V)} + i\mathcal{M}_{\rm DDVCS}^{(A)} \right)$$

• Vector contribution:

$$\begin{split} i\mathcal{M}_{\rm DDVCS}^{(V)} = &-\frac{1}{2} \left[f(s_{\ell}, \ell_{-}, \ell_{+}; s, k', k) - g(s_{\ell}, \ell_{-}, n^{\star}, \ell_{+}) g(s, k', n, k) - g(s_{\ell}, \ell_{-}, n, \ell_{+}) g(s, k', n^{\star}, k) \right] \\ & \times \left[(\mathcal{H} + \mathcal{E}) [Y_{s_{2}s_{1}}g(+, r'_{s_{2}}, n, r_{s_{1}}) + Z_{s_{2}s_{1}}g(-, r'_{-s_{2}}, n, r_{-s_{1}})] - \frac{\mathcal{E}}{M} \mathcal{J}_{s_{2}s_{1}}^{(2)} \right] \end{split}$$

• Axial contribution:

$$i\mathcal{M}_{\rm DDVCS}^{(A)} = \frac{-i}{2} \epsilon_{\perp}^{\mu\nu} j_{\mu}(s_{\ell},\ell_{-},\ell_{+}) j_{\nu}(s,k',k) \left[\widetilde{\mathcal{H}} \mathcal{J}_{s_{2}s_{1}}^{(1,5)+} + \widetilde{\mathcal{E}} \frac{\Delta^{+}}{2M} \mathcal{J}_{s_{2}s_{1}}^{(2,5)+} \right]$$

DVCS & TCS limits of DDVCS

Comparison of DDVCS and (left) DVCS and (right) TCS cross-sections for pure VCS subprocess.

• We consider $Q'^2 > Q^2$: our DDVCS is "more" timelike than spacelike

Observables: beam-spin asymmetry

Monte Carlo study: distribution in y

10000 events/distribution. Neither acceptance nor detectors response are taken into

account in this study

Experiment	Beam energies [GeV]	Range of $ t $ [GeV ²]	$\begin{array}{c}\sigma _{0 < y < 1} \\ [\mathrm{pb}]\end{array}$	$\mathcal{L}^{10k} _{0 < y < 1}$ [fb ⁻¹]	y_{\min}	$\sigma _{y_{\min} < y < 1} / \sigma _{0 < y < 1}$
JLab12	$E_e = 10,6, E_p = M$	(0,1,0,8)	0,14	70	0,1	1
JLab20+	$E_e = 22, E_p = M$	(0,1,0,8)	0,46	22	0,1	1
EIC	$E_e = 5, E_p = 41$	(0,05,1)	3,9	2,6	0,05	0,73
EIC	$E_e = 10, E_p = 100$	(0,05,1)	4,7	2,1	0,05	0,32

SUC

- New analytical formulae for the electroproduction of a lepton pair have been derived.
- Asymmetries are large enough for DDVCS to be measurable at both current (JLab12) and future (JLab20+, EIC) experiments
- Implemented in PARTONS and EpIC MC (LO + LT)
- Higher Twist needed (also for DVCS and TCS) and we are working on it.

2γ production - why study this process?

• Photo- and Electroproduction of photon pairs with large invariant mass:

$$\gamma N \rightarrow \gamma \gamma N$$

- The hard part is a $2 \rightarrow 3$ reaction, a new type of processes studied within the framework of QCD collinear factorization.
- The amplitude depends only on charge-odd combinations of GPDs (only valence quarks contribute):
 - DVCS: $\sum_{q} e_q^2 \left(H^q(x,\xi) H^q(-x,\xi) \right)$ and $H^g(x)$
 - Diphoton: $\sum_q e_q^3 \left(H^q(x,\xi) + H^q(-x,\xi) \right)$ and no gluons
- No gluonic GPD contribution cleaner and safer (factorization).

The full amplitude:

$$\mathcal{T} = \sum_{q} \int_{-1}^{1} dx \, \mathcal{T}^{q} \left(x, \xi, \ldots \right) \mathrm{GPD}^{q} (x, \xi, t).$$

A. Pedrak , B. Pire , L. Szymanowski , JW, Phys. Rev. D 96 (2017)

LO results

The process can be studied at intense quasi-real photon beam facilities in JLab or EIC.

FIG. 5. The $M_{\gamma\gamma}^2$ dependence of the unpolarized differential cross section $\frac{d\sigma}{dM_{\gamma}^2 dt}$ on a proton (left panel) and on a neutron (right panel) at $t = t_{\min}$ and $S_{\gamma N} = 20 \text{ GeV}^2$ (full curves), $S_{\gamma N} = 100 \text{ GeV}^2$ (dashed curve) and $S_{\gamma N} = 10^6 \text{ GeV}^2$ (dash-dotted curve, multiplied by 10^5).

NLO factorization: O. Grocholski , B. Pire , P. Sznajder , L. Szymanowski , JW, Phys. Rev. D 104 (2021) [2110.00048]

Considered 1-loop diagrams

Next-to-leading order results

- 2- and 3-point loops \rightarrow relatively simple results.
- 5-point loop integral can be reduced to a sum 4-point ones.
- Finite part of a 4-point diagrams: expressible in terms of

$$\mathcal{F}_{nab} := \int_0^1 dy \, \int_0^1 dz \, y^a z^b \Big(\alpha_1 y + \alpha_2 z + \alpha_3 y z + i\epsilon \Big)^{-n},$$

$$\mathcal{G} := \int_0^1 dy \, \int_0^1 dz \, z^2 \Big(\alpha_1 y + \alpha_2 z + \alpha_3 y z + i\epsilon \Big)^{-2} \\ \times \log \Big(\alpha_1 y + \alpha_2 z + \alpha_3 y z + i\epsilon \Big).$$

Large computational power is needed to get stable results.

Comparison between GK [hep-ph/0708.3569] (solid magenta) and MMS [hep-ph/1304.7645] (dotted green) GPD models for $t = -0.1~{\rm GeV}^2$ and the scale $\mu_F^2 = 4~{\rm GeV}^2$ for $\xi = x$ $\xi = 0.1$ $\xi = 0.5$.

 H^q, E^q - vector GPDs, \tilde{H}^q, \tilde{E}^q - axial GPDs.

$$\mathcal{H} = \sum_{q} \int_{-1}^{1} dx \, \mathcal{T}^{q}(x,\xi,\ldots) H^{q}(x,\xi,t),$$

 $\mathcal{E}, \tilde{\mathcal{H}}, \tilde{\mathcal{E}}$ defined in the analogous way.

Contribution from axial GPDs is small at LO, we neglect it in the NLO analysis.

Stability of results

O. Grocholski , B. Pire , P. Sznajder , L. Szymanowski , JW, Phys.Rev.D 105 (2022)

 \mathcal{H} as a function of $M_{\gamma\gamma}$ for $S_{\gamma N}=20~{\rm GeV}^2$, $t=t_0$ and $u'=-1~{\rm GeV}^2$.

LO: solid (dashed) red line NLO: dotted (dash-dotted) blue line for GK (MMS) GPD model

Differential cross-section as a function of $S_{\gamma N}$ (bottom axis) and the corresponding ξ (top axis) for $M_{\gamma \gamma}^2 = 4 \text{ GeV}^2$, $t = t_0$ and $u' = -1 \text{ GeV}^2$.

LO: solid (dashed) red line NLO: dotted (dash-dotted) blue line for GK (MMS) GPD model

Differential cross-section as a function of $M^2_{\gamma\gamma}$ (bottom axis) and the corresponding ξ (top axis) for $S_{\gamma N} = 20 \text{ GeV}^2$, $t = t_0$ and $u' = -1 \text{ GeV}^2$.

LO: solid (dashed) red line NLO: dotted (dash-dotted) blue line for GK (MMS) GPD model

MC simulations

Exclusive diphoton photoproduction

B. Skura (Warsaw U. of Technology), PS preliminary results

• The process implemented in EpIC MC generator with equivalent-photon approximation

$$\frac{\mathrm{d}^{6}\sigma}{\mathrm{d}Q^{2}\,\mathrm{d}y\,\mathrm{d}t\,\mathrm{d}u'\,\mathrm{d}M_{\gamma\gamma}^{2}\mathrm{d}\phi} = \Gamma(y,Q^{2}) \times \frac{\mathrm{d}^{4}\sigma_{2\gamma}}{\mathrm{d}t\,\mathrm{d}u'\,\mathrm{d}M_{\gamma\gamma}^{2}\mathrm{d}\phi}$$

· Condition used in generation of events

• Event counts are scaled to 10 fb⁻¹

Electroproduction and Bethe-Heitler contributions

A. Pedrak , B. Pire , L. Szymanowski , JW, Phys.Rev.D 101 (2020)

FIG. 2. The single Bethe-Heitler process contributing to $eN \to e'\gamma\gamma N'$. Two other graphs with $k_1 \leftrightarrow k_2$ interchange are not shown.

FIG. 1. The QCD process contributing to $eN \rightarrow e'\gamma\gamma N'$.

FIG. 3. The double Bethe-Heitler process contributing to $eN \rightarrow e'\gamma\gamma N'$. Three other graphs with $k_1 \leftrightarrow k_2$ interchange are not shown.

Access to $x \neq \xi$.

Bethe-Heitler contributions

FIG. 10. The relative importance of the different processes contributing to $eN \rightarrow e'\gamma\gamma N'$ —shown here (from left to right and from top to bottom) for $s = 20 \text{ GeV}^2$, $s = 100 \text{ GeV}^2$, $s = 1000 \text{ GeV}^2$ and $s = 10000 \text{ GeV}^2$ at the kinematical point $M_{\gamma\gamma}^2 = 3 \text{ GeV}^2$, $\theta_{\gamma\gamma} = 3\pi/8$, $\phi_{\gamma\gamma} = 0$, y = 0.6—depends much on the value of Q^2 . The QCD process (solid curve) dominates at very low Q^2 , the single Bethe-Heitler process (dashed curve) dominates at higher Q^2 , while the double Bethe-Heitler process (dotted curve) is always subdominant.

- $\gamma N \to \gamma \gamma N$ can provide valuable information about charge-odd combinations of GPDs,
- We performed a next-to-leading order analysis of the diphoton photoproduction process,
- NLO corrections result in smaller cross sections,
- Electroproduction gives a chance to access $x \neq \xi$ line
- Implemented in PARTONs and EpIC MC