Renormalons and power corrections to pseudo- and quasi-GPDs

Jakob Schönleber

RIKEN BNL

[Vladimir Braun, Maria Koller, J.S., 2401.08012]

January 19, 2024

- Pseudo- and quasi-GPDs
- Renormalon ambiguities and power corrections
- The bubble sum in Borel space
- The w = 1 (i.e. leading) renormalon
- ${\scriptstyle \bullet}$ Renormalon ambiguity for the quasi-GPD at $x=\xi$
- Summary

- Can calculate hadronic matrix elements of bilocal operators with space-like separation on the lattice.
- E.g. the (quasi-) generalized loffe-time distribution

$$\mathcal{I}(\tau, \tilde{\xi}, z^2) = \frac{1}{2P^0} \langle p' | \bar{q} \left(\frac{z}{2} v \right) \gamma^0 \left[\frac{z}{2} v, -\frac{z}{2} v \right] q \left(-\frac{z}{2} v \right) | p \rangle,$$

where we can take v = (0, 0, 0, 1).

- Relevant parameters:
 - average target momentum $P^{\mu} = \frac{p^{\mu} + p'^{\mu}}{2}$
 - (quasi-)skewness $\widetilde{\xi} = rac{p^z p'^z}{p^z + p'^z}$
 - (quasi-)loffe-time $au = zP^z$

Generalized pseudo distribution

$$\mathcal{P}(x,\tilde{\xi},z^2) = \int_{-\infty}^{\infty} \frac{d\tau}{2\pi} \mathcal{I}(\tau,\tilde{\xi},z^2)$$

• Generalized quasi distribution

$$\mathcal{Q}(x,\tilde{\xi},P^z) = P^z \int_{-\infty}^{\infty} \frac{dz}{2\pi} \mathcal{I}(zP^z,\tilde{\xi},z^2)$$

• Both reduce to the generalized parton distribution at leading order in $|z|, \frac{1}{P^z}, \alpha_s.$

$$\mathcal{P}(x,\widetilde{\xi},z^2), \mathcal{Q}(x,\widetilde{\xi},P^z) \xrightarrow{|z|,\frac{1}{P^z},\alpha_s \to 0} H(x,\xi),$$

where $\xi = \tilde{\xi}$ at leading order in $\frac{1}{P^z}$.

All-order factorization theorem (renormalization and factorization scales tacitly implied)

$$\begin{aligned} \mathcal{I}(\tau,\xi,z^2) &= \int_{-1}^1 dx \, \widetilde{T}(x,\tau,\xi,z^2) H(x,\xi) + O(\lambda) \\ &= \int_0^1 du \, T(u,\tau,\xi,z^2) I(u\tau,\xi) + O(\lambda) \end{aligned}$$

where $\lambda \sim |z| \Lambda \sim \frac{\Lambda}{P^z}$, where $\Lambda \sim \sqrt{-t} \sim \Lambda_{\rm QCD}$ and $I(\tau, \xi)$ is the Fourier transform $(x \leftrightarrow \tau)$ of the GPD.

- Leading order $T = \delta(1-u) + O(\alpha_s)$, $\tilde{T} = e^{-i\tau x} + O(\alpha_s)$.
- \bullet All-order factorization for $\mathcal P$ and $\mathcal Q$ in terms of H follows immediately

- Generally perturbative series for observables $R = \sum_n r_n \alpha^n$ are asymptotic with zero radius of converge in coupling α
- \bullet The best possible approximation to R is obtained by truncating the series at the smallest term, with error $e^{-c/\alpha}$
- Can use Borel summation

$$B[R](w) = \sum_{n} r_n \frac{w^n}{n!}, \qquad R(\alpha) " = " \int_0^\infty dw \, e^{-w/\alpha} B[R](w).$$

Poles of B[R] are called **renormalons(*)**

• Ambiguity of perturbative series as residue (times $e^{-\frac{w}{\alpha_s}}$) at possible pole $w_0 \in \mathbb{R}_{>0}$ of B[R], $\delta_{w_0}R \propto \operatorname{Res}_{w_0}B[R]$. Roughly

$$\delta_{w_0} R \sim e^{-\frac{p}{\beta_0 \alpha_s(Q)}} \sim \left(\frac{\Lambda_{\rm QCD}^2}{Q^2}\right)^p$$

In general for factorized expressions

 $R(Q,\Lambda) = C(Q,\mu) \otimes \langle O \rangle(\mu,\Lambda) + O(\Lambda/Q)$

the IR renormalon ambiguities in C get cancelled by power-suppressed (UV) contributions in $O(\Lambda_{\rm QCD}/Q)$

• "UV dominance": An amgibuity term of the form

$$\delta_{w_0} C(Q,\mu) \otimes \langle O \rangle(\mu,\Lambda) \sim (\Lambda_{\text{QCD}}/Q)^p$$

is assumed to reflect the functional form of a higher-power $\sim (\Lambda_{\rm QCD}/Q)^p$ contribution.

- In the same way renormalon ambiguities in T should be cancelled by $O(\Lambda_{\rm QCD}^2/(P^z)^2)$

• To investigate renormalons in QCD, we can consider a unique subset of Feynman diagrams to all orders, say the highest power of β_0 contribution at each order in α_s

$$\infty \longrightarrow + \infty \longrightarrow + \infty \longrightarrow + \infty \longrightarrow +$$

 $\ensuremath{\,\bullet\,}$ In the case of T we have the diagrams

 ${\scriptstyle \bullet}$ Result for the Borel transform of the bubble sum of T

$$B[T(u,\tau,\xi,z^2)](w) = 2C_F e^{5w/3} (z^2 \Lambda_{\rm QCD}^2/4)^w \frac{\Gamma(-w)}{\Gamma(w+1)} \\ \times \left\{ \frac{2}{1+w} \Big[u^{1+w} {}_2F_1(1,2-w,2+w,u) \Big]_+ \cos((1-u)\xi\tau) \\ - \frac{\delta(1-u)}{1+w} - \frac{\delta(1-u)}{1-2w} + (1+w)u^w \frac{\sin((1-u)\xi\tau)}{\tau\xi} \right\},$$

• Get renormalon pole structure

• Additional singularities in the Borel plane might be generated by the Fourier transform. This happens only for the qGPD at $x = \pm \xi$.

• Use simple flavor non-singlet quark GPD model from [Belitsky, Radyushkin, 05]

• Behaviour near the singularities at $x \to \pm \xi$

$$H'(x,\xi) \sim \begin{cases} x \to \xi^+ : H'(\xi,\xi) + a_1(x-\xi)^{1/2} + \dots \\ x \to \xi^- : H'(\xi,\xi) + a_2(\xi-x)^1 + \dots \\ x \to (-\xi)^+ : a_3(x+\xi)^{1/2} \end{cases}$$

• Consequence of the non-analytic behaviour: Fourier transform scales like $I(\tau,\xi) \sim c |\tau|^{-5/2}$ as $|\tau| \to \infty$.

• Focus on the w = 1 renormalon

$$\delta_1 T(u, \tau, \xi, z^2) = \kappa z^2 \Lambda_{\text{QCD}}^2 \Big\{ (u + (1 - u) \log(1 - u)) \cos((1 - u)\tau\xi) \\ + \frac{u}{\xi\tau} \sin((1 - u)\tau\xi) \Big\},\$$

where $\kappa = O(1)$ is some constant.

• UV renormalization by zero-momentum subtraction $\widehat{\mathcal{I}}(\tau,\xi,z^2) = \frac{\mathcal{I}(\tau,\xi,z^2)}{\mathcal{I}(0,0,z^2)}$. Effectively adds overall $[...]_+$ (with subtraction at u = 1) to $\delta_1 T \Rightarrow$ Simply a shift by $-\frac{5}{12}I(\tau,\xi)$

• $\widehat{\mathcal{P}}$ and $\widehat{\mathcal{Q}}$ are respective Fourier transforms of $\widehat{\mathcal{I}}$.

Take overall prefactor $\kappa z^2 \Lambda_{\rm QCD}^2 = 1$ (it should be much smaller), $\xi = 0.3$

Jakob Schönleber (RIKEN BNL)

Renormalons and power corrections to p & qGPDs

Take overall prefactor $\kappa z^2 \Lambda_{\rm QCD}^2 = 1$ (it should be much smaller), $\xi = 0.3$

Jakob Schönleber (RIKEN BNL)

w=1 renormalon, Result for qGPD ${\mathcal Q}$ in DGLAP region

 $\kappa \Lambda_{\rm OCD}^2/(P^z)^2 = 0.02$, corresponding to roughly $P^z \sim 1.5 \,{\rm GeV}$, $\xi = 0.3$

w=1 renormalon, Result for qGPD ${\mathcal Q}$ in ERBL region

Jakob Schönleber (RIKEN BNL)

- The behaviour of the renormalon ambiguity for the qGDP at $x = \pm \xi$ is complicated due to the non-analyticity of the GDP. We obtain some interesting properties (only consider $x = +\xi$ for simplicity)
- $\delta_1 Q(x,\xi)$ diverges like $\frac{1}{\sqrt{x-\xi}}$ as $x \to \xi^+$ and like $\log(x-\xi)$ as $x \to \xi^-$
- There is a delta function contribution

$$\delta_1 \mathcal{Q}(x,\xi) = \dots + \left(1 - \frac{\pi^2}{6}\right) \delta(x-\xi) \left(H'(\xi^+,\xi) - H'(\xi^-,\xi)\right)$$

• Increasingly singular contributions to the qGPD for higher power terms, since $H^{(2n)}(x,\xi)\sim (x-\xi)^{3/2-2n}$ as $x\to\xi^+$

- What is the reason for the divergence at $x = \xi$?
- The total ambiguity is given by an expansion in powers of $rac{\Lambda}{P^z}$

$$\delta_R \mathcal{Q}(x,\xi) = \sum_{w \in \{\text{poles of } B[\mathcal{Q}]\}} \underbrace{\delta_w \mathcal{Q}(x,\xi)}_{\sim (\Lambda/P^z)^{2w}}.$$
 (1)

• For
$$x \neq \xi$$
 we have {poles of $B[\mathcal{Q}]$ } = \mathbb{N} .

- The expansion in (1) and the limit x → ξ do not commute. For x close to ξ the series has to be summed.
- To get the ambiguity at $x = \xi$, $\delta_R Q(\xi, \xi)$ we need to take $x = \xi$ before taking the residues.

- For x = ξ the Fourier transform produces additional singularities in the Borel plane:
- 1. A pole at w=1/2 corresponding to a linear power correction $\frac{1}{P^z}$, proportional to $H'(\xi^+,\xi)-H'(\xi^-,\xi)$
- 2. A pole at $w = \lambda/2$, where $1 < \lambda < 2$ corresponding to to a fractional power correction $\frac{1}{(P^z)^{\lambda}}$, where λ corresponds to the power in $q(x) \sim x^{\lambda-2}$ as $x \to 0$ where q(x) is the valence-quark GPD

3. A double pole at w = 1 corresponding to a power correction $\frac{\ln(P^z)}{(P^z)^2}$

- We have calculated the renormalon ambiguities to pGPDs and qGPDs. These can be used to estimate the sizes of power corrections in the $\frac{1}{P^z}$ expansion.
- \bullet Moderately small ambiguities gITD ${\cal I}$ and pGDP ${\cal P}.$ Very small after zero momentum subtraction
- Large ambiguities for the qGPD. Especially at non-analytic points of the GPD $\pm \xi$, 1. Divergence of $\delta_R Q$ as $x \to \pm \xi$.
- For the qGPD, additional singularities in the Borel plane get generated at $x = \xi$, hinting towards an interesting structure of power corrections for the qGPD at $x = \xi$.