Renormalons and power corrections to pseudo- and quasi-GPDs

Jakob Schönleber

RIKEN BNL

[Vladimir Braun, Maria Koller, J.S., 2401.08012]

January 19, 2024

- Pseudo- and quasi-GPDs
- Renormalon ambiguities and power corrections
- The bubble sum in Borel space
- The $w=1$ (i.e. leading) renormalon
- Renormalon ambiguity for the quasi-GPD at $x=\xi$
- Summary
- Can calculate hadronic matrix elements of bilocal operators with space-like separation on the lattice.
- E.g. the (quasi-) generalized loffe-time distribution

$$
\mathcal{I}\left(\tau, \tilde{\xi}, z^{2}\right)=\frac{1}{2 P^{0}}\left\langle p^{\prime}\right| \bar{q}\left(\frac{z}{2} v\right) \gamma^{0}\left[\frac{z}{2} v,-\frac{z}{2} v\right] q\left(-\frac{z}{2} v\right)|p\rangle
$$

where we can take $v=(0,0,0,1)$.

- Relevant parameters:
- average target momentum $P^{\mu}=\frac{p^{\mu}+p^{\prime \mu}}{2}$
- (quasi-)skewness $\widetilde{\xi}=\frac{p^{z}-p^{\prime z}}{p^{z}+p^{\prime z}}$
- (quasi-)loffe-time $\tau=z P^{z}$
- Generalized pseudo distribution

$$
\mathcal{P}\left(x, \widetilde{\xi}, z^{2}\right)=\int_{-\infty}^{\infty} \frac{d \tau}{2 \pi} \mathcal{I}\left(\tau, \widetilde{\xi}, z^{2}\right)
$$

- Generalized quasi distribution

$$
\mathcal{Q}\left(x, \widetilde{\xi}, P^{z}\right)=P^{z} \int_{-\infty}^{\infty} \frac{d z}{2 \pi} \mathcal{I}\left(z P^{z}, \tilde{\xi}, z^{2}\right)
$$

- Both reduce to the generalized parton distribution at leading order in $|z|, \frac{1}{P^{z}}, \alpha_{s}$.

$$
\mathcal{P}\left(x, \tilde{\xi}, z^{2}\right), \mathcal{Q}\left(x, \tilde{\xi}, P^{z}\right) \xrightarrow{|z|, \frac{1}{P z}, \alpha_{s} \rightarrow 0} H(x, \xi),
$$

where $\xi=\widetilde{\xi}$ at leading order in $\frac{1}{P^{z}}$.

- All-order factorization theorem (renormalization and factorization scales tacitly implied)

$$
\begin{aligned}
\mathcal{I}\left(\tau, \xi, z^{2}\right) & =\int_{-1}^{1} d x \widetilde{T}\left(x, \tau, \xi, z^{2}\right) H(x, \xi)+O(\lambda) \\
& =\int_{0}^{1} d u T\left(u, \tau, \xi, z^{2}\right) I(u \tau, \xi)+O(\lambda)
\end{aligned}
$$

where $\lambda \sim|z| \Lambda \sim \frac{\Lambda}{P^{z}}$, where $\Lambda \sim \sqrt{-t} \sim \Lambda_{\mathrm{QCD}}$ and $I(\tau, \xi)$ is the Fourier transform $(x \leftrightarrow \tau)$ of the GPD.

- Leading order $T=\delta(1-u)+O\left(\alpha_{s}\right), \widetilde{T}=e^{-i \tau x}+O\left(\alpha_{s}\right)$.
- All-order factorization for \mathcal{P} and \mathcal{Q} in terms of H follows immediately
- Generally perturbative series for observables $R=\sum_{n} r_{n} \alpha^{n}$ are asymptotic with zero radius of converge in coupling α
- The best possible approximation to R is obtained by truncating the series at the smallest term, with error $e^{-c / \alpha}$
- Can use Borel summation

$$
B[R](w)=\sum_{n} r_{n} \frac{w^{n}}{n!}, \quad R(\alpha) "=" \int_{0}^{\infty} d w e^{-w / \alpha} B[R](w)
$$

Poles of $B[R]$ are called renormalons $\left({ }^{*}\right)$

- Ambiguity of perturbative series as residue (times $e^{-\frac{w}{\alpha_{s}}}$) at possible pole $w_{0} \in \mathbb{R}_{>0}$ of $B[R], \delta_{w_{0}} R \propto \operatorname{Res}_{w_{0}} B[R]$. Roughly

$$
\delta_{w_{0}} R \sim e^{-\frac{p}{\beta_{0} \alpha_{S}(Q)}} \sim\left(\frac{\Lambda_{\mathrm{QCD}}^{2}}{Q^{2}}\right)^{p}
$$

- In general for factorized expressions

$$
R(Q, \Lambda)=C(Q, \mu) \otimes\langle O\rangle(\mu, \Lambda)+O(\Lambda / Q)
$$

the IR renormalon ambiguities in C get cancelled by power-suppressed (UV) contributions in $O\left(\Lambda_{\mathrm{QCD}} / Q\right)$

- "UV dominance": An amgibuity term of the form

$$
\delta_{w_{0}} C(Q, \mu) \otimes\langle O\rangle(\mu, \Lambda) \sim\left(\Lambda_{\mathrm{QCD}} / Q\right)^{p}
$$

is assumed to reflect the functional form of a higher-power $\sim\left(\Lambda_{\mathrm{QCD}} / Q\right)^{p}$ contribution.

- In the same way renormalon ambiguities in T should be cancelled by $O\left(\Lambda_{\mathrm{QCD}}^{2} /\left(P^{z}\right)^{2}\right)$
- To investigate renormalons in QCD, we can consider a unique subset of Feynman diagrams to all orders, say the highest power of β_{0} contribution at each order in α_{s}

- In the case of T we have the diagrams

(a)

(b)

(c)

(d)
- Result for the Borel transform of the bubble sum of T

$$
\begin{aligned}
& B\left[T\left(u, \tau, \xi, z^{2}\right)\right](w)=2 C_{F} e^{5 w / 3}\left(z^{2} \Lambda_{\mathrm{QCD}}^{2} / 4\right)^{w} \frac{\Gamma(-w)}{\Gamma(w+1)} \\
& \quad \times\left\{\frac{2}{1+w}\left[u^{1+w}{ }_{2} F_{1}(1,2-w, 2+w, u)\right]_{+} \cos ((1-u) \xi \tau)\right. \\
& \left.\quad-\frac{\delta(1-u)}{1+w}-\frac{\delta(1-u)}{1-2 w}+(1+w) u^{w} \frac{\sin ((1-u) \xi \tau)}{\tau \xi}\right\}
\end{aligned}
$$

- Get renormalon pole structure

- Additional singularities in the Borel plane might be generated by the Fourier transform. This happens only for the qGPD at $x= \pm \xi$.
- Use simple flavor non-singlet quark GPD model from [Belitsky, Radyushkin, 05]

- Behaviour near the singularities at $x \rightarrow \pm \xi$

$$
H^{\prime}(x, \xi) \sim \begin{cases}x \rightarrow \xi^{+}: \quad & H^{\prime}(\xi, \xi)+a_{1}(x-\xi)^{1 / 2}+\ldots \\ x \rightarrow \xi^{-}: & H^{\prime}(\xi, \xi)+a_{2}(\xi-x)^{1}+\ldots \\ x \rightarrow(-\xi)^{+}: \quad a_{3}(x+\xi)^{1 / 2}\end{cases}
$$

- Consequence of the non-analytic behaviour: Fourier transform scales like $I(\tau, \xi) \sim c|\tau|^{-5 / 2}$ as $|\tau| \rightarrow \infty$.
- Focus on the $w=1$ renormalon

$$
\begin{aligned}
\delta_{1} T\left(u, \tau, \xi, z^{2}\right)=\kappa z^{2} \Lambda_{\mathrm{QCD}}^{2}\{ & (u+(1-u) \log (1-u)) \cos ((1-u) \tau \xi) \\
& \left.+\frac{u}{\xi \tau} \sin ((1-u) \tau \xi)\right\}
\end{aligned}
$$

where $\kappa=O(1)$ is some constant.

- UV renormalization by zero-momentum subtraction $\widehat{\mathcal{I}}\left(\tau, \xi, z^{2}\right)=\frac{\mathcal{I}\left(\tau, \xi, z^{2}\right)}{\mathcal{I}\left(0,0, z^{2}\right)}$. Effectively adds overall $[\ldots]_{+}$(with subtraction at $u=1$) to $\delta_{1} T \Rightarrow$ Simply a shift by $-\frac{5}{12} I(\tau, \xi)$
- $\widehat{\mathcal{P}}$ and $\widehat{\mathcal{Q}}$ are respective Fourier transforms of $\widehat{\mathcal{I}}$.
$w=1$ renormalon, Result for iGID \mathcal{I}
Take overall prefactor $\kappa z^{2} \Lambda_{\mathrm{QCD}}^{2}=1$ (it should be much smaller), $\xi=0.3$

$w=1$ renormalon, Result for pGPD \mathcal{P}
Take overall prefactor $\kappa z^{2} \Lambda_{\mathrm{QCD}}^{2}=1$ (it should be much smaller), $\xi=0.3$

$w=1$ renormalon, Result for qGPD \mathcal{Q} in DGLAP region

$\kappa \Lambda_{\mathrm{QCD}}^{2} /\left(P^{z}\right)^{2}=0.02$, corresponding to roughly $P^{z} \sim 1.5 \mathrm{GeV}, \xi=0.3$

$w=1$ renormalon, Result for $\mathbf{q G P D} \mathcal{Q}$ in ERBL region

$\kappa \Lambda_{\mathrm{QCD}}^{2} /\left(P^{z}\right)^{2}=0.02$, corresponding to roughly $P^{z} \sim 1.5 \mathrm{GeV}, \xi=0.3$

- The behaviour of the renormalon ambiguity for the qGDP at $x= \pm \xi$ is complicated due to the non-analyticity of the GDP. We obtain some interesting properties (only consider $x=+\xi$ for simplicity)
- $\delta_{1} \mathcal{Q}(x, \xi)$ diverges like $\frac{1}{\sqrt{x-\xi}}$ as $x \rightarrow \xi^{+}$and like $\log (x-\xi)$ as $x \rightarrow \xi^{-}$
- There is a delta function contribution

$$
\delta_{1} \mathcal{Q}(x, \xi)=\ldots+\left(1-\frac{\pi^{2}}{6}\right) \delta(x-\xi)\left(H^{\prime}\left(\xi^{+}, \xi\right)-H^{\prime}\left(\xi^{-}, \xi\right)\right)
$$

- Increasingly singular contributions to the qGPD for higher power terms, since $H^{(2 n)}(x, \xi) \sim(x-\xi)^{3 / 2-2 n}$ as $x \rightarrow \xi^{+}$
- What is the reason for the divergence at $x=\xi$?
- The total ambiguity is given by an expansion in powers of $\frac{\Lambda}{P^{z}}$

$$
\begin{equation*}
\delta_{R} \mathcal{Q}(x, \xi)=\sum_{w \in\{\text { poles of } B[\mathcal{Q}]\}} \underbrace{\delta_{w} \mathcal{Q}(x, \xi)}_{\sim\left(\Lambda / P^{z}\right)^{2 w}} . \tag{1}
\end{equation*}
$$

- For $x \neq \xi$ we have $\{$ poles of $B[\mathcal{Q}]\}=\mathbb{N}$.
- The expansion in (1) and the limit $x \rightarrow \xi$ do not commute. For x close to ξ the series has to be summed.
- To get the ambiguity at $x=\xi, \delta_{R} \mathcal{Q}(\xi, \xi)$ we need to take $x=\xi$ before taking the residues.
- For $x=\xi$ the Fourier transform produces additional singularities in the Borel plane:

1. A pole at $w=1 / 2$ corresponding to a linear power correction $\frac{1}{P^{z}}$, proportional to $H^{\prime}\left(\xi^{+}, \xi\right)-H^{\prime}\left(\xi^{-}, \xi\right)$
2. A pole at $w=\lambda / 2$, where $1<\lambda<2$ corresponding to to a fractional power correction $\frac{1}{\left(P^{z}\right)^{\lambda}}$, where λ corresponds to the power in $q(x) \sim x^{\lambda-2}$ as $x \rightarrow 0$ where $q(x)$ is the valence-quark GPD
3. A double pole at $w=1$ corresponding to a power correction $\frac{\ln \left(P^{z}\right)}{\left(P^{z}\right)^{2}}$

- We have calculated the renormalon ambiguities to pGPDs and qGPDs. These can be used to estimate the sizes of power corrections in the $\frac{1}{P^{z}}$ expansion.
- Moderately small ambiguities gITD \mathcal{I} and pGDP \mathcal{P}. Very small after zero momentum subtraction
- Large ambiguities for the qGPD. Especially at non-analytic points of the GPD $\pm \xi, 1$. Divergence of $\delta_{R} \mathcal{Q}$ as $x \rightarrow \pm \xi$.
- For the qGPD, additional singularities in the Borel plane get generated at $x=\xi$, hinting towards an interesting structure of power corrections for the qGPD at $x=\xi$.

