Physics at High Baryon Density

- Study the QCD Phase Structure in High-Energy Nuclear Collisions

Nu Xu

LBNL / GSI

Outline

1) Introduction

2) Results from RHIC BES Program

- i. Collectivity
- ii. Criticality
- iii. Baryon Correlations

(EOS) (EOS, CP) (EOS, NN, YN)

3) Outlook

Phase Structure of Strong Interactions

Nu Xu

Nuclear Collisions and QCD Phase Diagram

1) RHIC BES: \rightarrow search for 1st-order phase transition and **QCD critical point**; 2) Baryon interactions (*e.g.* N - N, Y - N) \rightarrow inner structure of compact stars

Nu Xu

LGT Calculation: QCD Phase Structure

STAR Fixed Target Setup

CBM participates in RHIC BES-II in 2019 – 2021:

- > Complementary to CBM program: $\sqrt{s_{NN}} = 3 7.2 \text{ GeV} (760 \ge \mu_B \ge 420 \text{ MeV})$
- Strange-hadron, hyper-nuclei and fluctuation at the high baryon density region

Nu Xu

STAR BES-I and BES-II Data Sets

Au+Au Collisions at RHIC												
Collider Runs							Fixed-Target Runs					
	√ S_{NN} (GeV)	#Events	μ_B	Ybeam	run		√ S NN (GeV)	#Events	μ_B	Ybeam	run	
1	200	380 M	25 MeV	5.3	Run-10, 19	1	13.7 (100)	50 M	280 MeV	-2.69	Run-21	
2	62.4	46 M	75 MeV		Run-10	2	11.5 (70)	50 M	320 MeV	-2.51	Run-21	
3	54.4	1200 M	85 MeV		Run-17	3	9.2 (44.5)	50 M	370 MeV	-2.28	Run-21	
4	39	86 M	112 MeV		Run-10	4	7.7 (31.2)	260 M	420 MeV	-2.1	Run-18, 19, 20	
5	27	585 M	156 MeV	3.36	Run-11, 18	5	7.2 (26.5)	470 M	440 MeV	-2.02	Run-18, 20	
6	19.6	595 M	206 MeV	3.1	Run-11, 19	6	6.2 (19.5)	120 M	490 MeV	1.87	Run-20	
7	17.3	256 M	230 MeV		Run-21	7	5.2 (13.5)	100 M	540 MeV	-1.68	Run-20	
8	14.6	340 M	262 MeV		Run-14, 19	8	4.5 (9.8)	110 M	590 MeV	-1.52	Run-20	
9	11.5	57 M	316 MeV		Run-10, 20	9	3.9 (7.3)	120 M	633 MeV	-1.37	Run-20	
10	9.2	160 M	372 MeV		Run-10, 20	10	3.5 (5.75)	120 M	670 MeV	-1.2	Run-20	
11	7.7	104 M	420 MeV		Run-21	11	3.2 (4.59)	200 M	699 MeV	-1.13	Run-19	
						12	3.0 (3.85)	260 + 2000 M	760 MeV	-1.05	Run-18, 21	

Most precise data to map the QCD phase diagram $3 < \sqrt{s_{NN}} < 200 \text{ GeV}; 760 > \mu_B > 25 \text{ MeV}$

Nu Xu

Outline

1) Introduction 2) Results from RHIC BES Program i. Collectivity (EOS) ii. Criticality

iii. Baryon Correlations

(EOS, CP) (EOS, NN, YN)

3) Outlook

The emergent properties of QCD matter

$$\partial_{\mu}[(\varepsilon + p)u^{\mu} u^{\nu} - pg^{\mu\nu}] = 0$$

$$\partial_{\mu}[s u^{\mu}] = 0$$

$$\frac{d^2 N}{p_T dp_T d\varphi} = \frac{1}{2\pi} \frac{dN}{p_T dp_T} \left\{ 1 + \sum_{n=1}^{\infty} 2v_n (p_T) \cos[n(\varphi - \Psi_R)] \right\}$$
$$- \frac{v_1}{v_2} \quad \text{Directed flow;} \\- \frac{v_2}{v_2} \quad \text{Elliptic flow;} \quad - \frac{v_3}{v_3} \quad \text{Triangle flow}$$

Anisotropy Parameter v₂

Sensitive to initial/final conditions, EoS and degrees of freedom

Partonic Collectivity at RHIC

STAR: PRL116, 62301(2016)

Nu Xu

Heavy Flavor D⁰ Collectivity at HRIC

1) First application of MAPS technology in high energy collisions, excellent position resolution;

- "These results suggest that charm quarks have achieved local thermal equilibrium with the medium created in such (200GeV Au+Au) collisions"
- Hadronization via quark coalescence process

STAR: PRL113, 142301(14); PRC99, 034908(19); PRL118, 212301(17); PRL123, 162301(19); PRL124, 172301(20)

"Advances in Nuclear Matter Dynamics: A Tribute to Declan Keane, Physics Department, Kent State University, December 1 – 2, 2023

Nu Xu

Equation of State for Strong Interaction

- 1) Left-plot: Energy dependence of η/s extracted from light-flavor hadron v₂ and v₃. Right-plot: extracted from Bayesian fits to R_{AA} and v₂ at 200GeV collisions;
- 2) Both sides meet at the unity of the scaled temperature;
- 3) The values of η/s increase quickly below $\sqrt{s_{NN}} = 39 \text{ GeV} \rightarrow \text{QGP}$ dominants in higher energies;

4) Evidence of the QCD transition!

- 1) L.P. Csernai, J.I. Kapusta, L.D. McLerran, PRL<u>97</u> (2006) 152303
- 2) X.Dong, Y.J. Lee & R.Rapp, ARNPS, <u>69</u> (2019) 417
- 3) J.E.Bernhard, J.S.Moreland & S. Bass, Nat. Phys. <u>15</u> (2015) 1113
- I. Karpenko, P. Huovinen, H. Petersen, and M. Bleicher, Phys.Rev.<u>C91</u>, 064901 (2015).
- G.Nijs, W.van der Schee, U. Gürsoy and R. Snellings, PRL<u>126</u>, (2021) 202301

Strongly-Interacting Low-Viscosity Matter

Disappearance of Partonic Collectivity

> At **3 GeV**, NCQ scaling is absent;

Transport model calculations, with baryonic mean field, reproduce both v₁ and v₂ results;

> hadronic interactions dominant!

STAR: PLB827, 137003(2022)

Nu Xu

"<u>Advances in Nuclear Matter Dynamics: A Tribute to Declan Keane</u>, Physics Depa

The emergent properties of QCD matter

Criticality

Conserved Quantities (B, Q, S)

- 1) In strong interactions, baryons (B), charges (Q) and strangeness (S) are conserved;
- Higher order moments/cumulants describe the shape of distributions and quantify fluctuations. They are sensitive to the correlation length ξ, phase structure;
- 3) Direct connection to theoretical calculations of susceptibilities.

Nu Xu

Expectations for Models

 Characteristic "Oscillating pattern" is expected for the QCD critical point but the exact shape depends on the location of freeze-out with respect to the location of CP
 Critical Region (CR)

- M. Stephanov, PRL107, 052301(2011) - V. Skokov, Quark Matter 2012
- J.W. Chen, J. Deng, H. Kohyyama, Phys. Rev. <u>D93</u> (2016) 034037

Event-by-Event Net-Proton Distributions (raw)

Energy Dependence of the Net-p $\kappa\sigma^2$

he emergent properties of QCD matter

Baryon Correlations

Baryon Correlation Functions

"Advances in Nuclear Matter Dynamics: A Tribute to Declan Keane, Physics Department, Kent State University, December 1 – 2, 2023

Nu Xu

$p - \Lambda$, $d - \Lambda$ Correlation Functions

Nu Xu

d – A Correlation Function: Final State Interactions

Forward scattering amplitude: $f(k^*) = \left\{\frac{1}{f_0} + \frac{1}{2}d_0k^{*2} - ik^*\right\}^{-1}$ $p - \Lambda$: $\frac{1}{4} {}^{1}S_0 + \frac{3}{4} {}^{2}S_1$ $d - \Lambda$: $\frac{1}{3} {}^{2}S_{1/2} + \frac{2}{3} {}^{4}S_{3/2}$

- 1) Scattering amplitude shrinks once s-quark hadrons are involved. For d-A, the spin-averaged f_0 is very close to zero, evidence for interference between different spin states;
- 2) When $f_0 < 0$, bound state becomes available: ${}^{3}He, {}^{4}He, {}^{3}_{\Lambda}H;$

First experimental data on identified scattering length for spin-states!

References: Hildenbrand, HWH, PRC100 (2019) 034002

Nu Xu

Outline

1) Introduction

2) Results from RHIC BES Program

- i. Collectivity
- ii. Criticality
- iii. Baryon Correlations

(EOS) (EOS, CP) (EOS, NN, YN)

3) Outlook

Future High Rates Experiments

Nu Xu

CBM Experiment at FAIR

CBM Experiment at FAIR

Nu Xu

Future Physics Programs

"Advances in Nuclear Matter Dynamics: A Tribute to Declan Keane, Physics Department, Kent State University, December 1 – 2, 2023

Nu Xu

BES-II

Acknowledgements:

P. Braun-Munzinger, X. Dong, S. Esumi, V. Koch, XF. Luo, B. Mohanty, A. Pandav, K. Redlich, A. Rustamov, P. Senger, M. Stephanov, J. Stroth, I. Vassiliev, YJ. Zhou // BLUE: Theory // RED: Experiment //

Alexander von Humboldt Foundation

Thank you very much for your attention!

Dear Declan:

With physics insights and *real* leadership, you have made tremendous contributions to the physics programs at the STAR experiment: in the study of Collectivity, Criticality, Femtoscopy and BES and more. STAR is shining brightly *because of you*.

Congratulations all of the achievements! Best wishes for your new endeavors!

Thank you!