Advances in Nuclear Matter Dynamics: A Tribute to Declan Keane

STAR Zero-Degree Calorimeter **Shower Max Detector** and its Physics

Gang Wang (UCLA)

Over the past 20 years, the STAR detector subsystems have greatly evolved.

I was lucky enough to contribute to a small part, starting in 2003.

Flow: time-honored probe

Original predictions for flow: bounce-off /side-splash (v_1) and squeeze-out (v_2)

$$\frac{d^2N}{dP_t d\phi} = \frac{dN}{dP_t} \left[1 + \sum_{n=1}^{n=\infty} 2v_n(y, P_t) \cos\left(n\phi\right) \right]$$

$$v_n = \left< \cos\left(n\phi \right) \right>$$

BEVALAC (1983), using "Plastic ball" spectrometer for Nb+Nb at 400 MeV Here, ϕ is the particle's azimuthal angle w.r.t the reaction plane.

The big picture

J. -Y. Ollitrault, Nucl. Phys. A638, 195c (1998).

Below ~100 MeV, attractive nuclear mean field: Projectile nucleons are deflected towards target \rightarrow negative v₁ Rotating system of projectile and target,

centrifugal force

 \rightarrow positive V₂

Intermediate energies, individual n-n collisions → a positive pressure: Bounce-off and side-splash Squeeze-out

High energies: Shorter passage time \rightarrow smaller v_1 Pressure on eccentricity \rightarrow larger, positive v_2

Design of Zero Degree Calorimeters

- 18 meters vs 5 cm: almost zero degree
- 100 GeV vs 270 MeV: most spectators at √s_{NN} = 200 GeV
- DX dipole magnet sweeps away protons, so only spectator neutrons are detected by the ZDCs.

Proposed Addition of an SMD to the STAR ZDCs

H. Crawford^{*}, D. Keane[†], M. Kopytine[†], B. Surrow^{**}, A. Tang[‡], S. Voloshin[§], G. Wang[†] and Z. Xu^{**}

*UC Berkeley Space Sciences Laboratory [†]Kent State University **Brookhaven National Laboratory [‡]Brookhaven National Laboratory / NIKHEF [§]Wayne State University

EXECUTIVE SUMMARY

We propose the addition of a Shower Max (one plane of 7 vertical slats and another of 8 horizontal slats) to the STAR Zero Degree Calorimeters, patterned after the ZDC-SMD already installed by PHENIX. This SMD would add significant capability to STAR in two areas of physics that are addressed in this document: collective flow and strangelet searching. New capabilities in spin physics are not addressed here. An ample manpower effort is available to implement this upgrade for RHIC run IV.

Simple Monte Carlo simulations on the performance of the proposed Shower Max Detectors.

of merit: the higher, 15 Neutrons/Event, v₁ = 2.5% Reaction Plane Figure of Merit the better. 20% 16000 azim)> 14000 0.25 of Events The final product of 12000 2 . 0.2 10000 **ZDC-SMDs** actually azim Number 8000 0.15 delivered a resolution <Cos(ZDC 6000 0.1 pretty close to what 4000 0.05 2000 we promised. 10 15 20 ZDC azim - RP azim (rad) **Neutron Multiplicity**

The event plane

resolution is a figure

Cosmic ray test high voltage over 1000 volts • Each test took 8 hours

2DC SMI)

East

fall beam

fore beam

On June 8, 2004, my daughter arrived. Since then, I calibrated ZDC-SMDs at midnight to 2 a.m., and devoted the rest of the day to the baby...

2023

Meanwhile, my wife was also doing her own Ph.D. thesis. We used to be young and energetic.

2004

Calibrations:

- Pedestal subtraction
- Gain correction
- Beam center (p_T = 0)
- Event plane flattening

¹ (%) 8 10 **Before corrections** After corrections east cos east cos east sin 🖈 east sin west cos west cos west sin west sin $\langle \cos n\varphi \cos n\psi_{\mathsf{east}} \rangle$ $(\cos n\psi_{
m west}\cos n\psi^*)$ $v_{n_east_cos}$ $\langle \cos^2 n\varphi \rangle$ $/2\langle \cos n\psi_{\text{east}}\cos n\psi_{\text{west}}\rangle$ $\cos n\psi_{\text{east}}\cos n\psi^*$ $(\sin n\varphi \sin n\psi_{\text{east}})$ $\langle \sin n\psi_{\sf west} \sin n\psi^* \rangle$ $v_{n_east_sin}$ $\langle \sin^2 n\varphi \rangle$ $\langle \sin n\psi_{\mathsf{east}} \sin n\psi^* \rangle$ $\sqrt{2} \langle \sin n\psi_{\text{east}} \sin n\psi_{\text{west}} \rangle$ $\langle \cos n\varphi \cos n\psi_{\text{west}} \rangle$ $\langle \cos n\psi_{\text{east}} \cos n\psi^* \rangle$ $v_{n_west_cos}$ $\langle \cos^2 n\varphi \rangle$ $(\cos n\psi_{
m west}\cos n\psi^*)$ $\sqrt{2}\langle \cos n\psi_{\text{east}}\cos n\psi_{\text{west}}$ $\langle \sin n\varphi \sin n\psi_{\text{west}} \rangle$ $(\sin n\psi_{\text{east}}\sin n\psi^*)$ $v_{n_{west_{sin}}}$ $(\sin^2 n \varphi)$ $\langle \sin n\psi_{\text{west}} \sin n\psi^* \rangle$ $\sqrt{2(\sin n\psi_{\text{east}}\sin n\psi_{\text{west}})}$

Method improvement: Separate the measurement into four terms, each with its own corrections.

$v_1 @62 \text{ GeV in Au+Au}$

The first STAR paper for which I played a leading role: Phys. Rev. C 73 (2006) 34903

 v_1 at forward rapidities:

reasonably well reproduced by models v, at midrapidities:

statistically significant confirmed with 3 approaches 1st attempt to PID v1.

Milestones:

- Aug. 2001, started Ph.D. program (Kent)
- Feb. 2003, married and joined STAR
- Nov. 2003, built ZDC-SMDs at BNL
- June 2004, daughter
- Nov. 2004, first talk (DNP, Chicago)
- Aug. 2005, first QM talk (Budapest)
- Dec. 2005, defended my thesis

June 2006, degree!

In May 2006, I joined UCLA as a postdoc, starting new works like heavy quarks and the chiral magnetic effect. However, my collaboration with Declan and my use of the ZDC-SMDs continued to thrive.

Softest point

- "Softest Point" in EOS => a minimum in the ratio of pressure to energy density
- Strong softening consistent with the 1st-order PT
- Weaker softening is more likely due to crossover

STAR, Phys. Rev. Lett. 112 (2014) 162301

Y. Nara *et al*, Phys. Lett. B769 (2017) 543. Yu. B. Ivanov *et al*, Phys. Rev. C91 (2015) 024915.

Equation of State without phase transition (PT): a monotonic trend

Equation of State assuming 1st-order PT: a dip in v_1 as a function of beam energy

Coalescence sum rule

Assumptions:

- v_1 is developed in prehadronic stage
- Hadrons are formed via coalescence:
- $(v_n)_{hadron} = \Sigma(v_n)_{constituent quarks}$ • $(v_1)_{\bar{u}} = (v_1)_{\bar{d}} \text{ and } (v_1)_{\bar{s}} = (v_1)_{\bar{s}}$

- Constituent quarks of anti-p, anti-∧ and K⁻ are all produced in the collision.
- For anti-∧s, prediction using coalescence sum rule agrees with measured v₁ above √s_{NN} = 11.5 GeV.
- Disagreement at 7.7 GeV implies the failure of one or more of the assumptions below 11.5 GeV.

STAR, Phys. Rev. Lett. 120 (2018) 62301

 $v_{_1}$ of transported u(d) is positive for all beam energies. A minimum at ~14.5 GeV

EM fields in heavy-ion collisions

Strongest man-made magnetic field: $-eB_y \sim 10^{18}$ Gauss (rough estimate for 200 GeV Au+Au at b = 5 fm, t = 0)

Earth ~0.5 Gauss

STAR magnet ~5000 Gauss

Neutron Star (Magentar) ~ 10¹⁴ Gauss

Heavy ion collisions $\sim 10^{18}$ Gauss

Evidence of Coulomb field: v1 in Cu+Au at 200 GeV

STAR, Phys. Rev. Lett. 118 (2017) 12301

Interplay between all known effects

Illustration for v_1 slope difference between protons and antiprotons.

- Transported quarks always give a positive value.
- Theory predicts Faraday+Coulomb > Hall: net EM effect is negative.
- The sign change from positive (central collisions) to negative (peripheral) will signify of Faraday+Coulomb effect.

v₁ splitting and sign change: Faraday + Coulomb > Hall + Transported Quarks

STAR, arXiv:2304.03430

And many more: the chiral magnetic effect

And many more: hyperon global polarization

ZDC-SMD: maybe the most cost-effective subsystem in STAR

Utilizing as many spare parts from others' leftover as possible, the cost was only around \$5k!

The aforementioned works only form a fraction of the STAR publications related to the ZDC-SMDs over the past 20 years.

A poem by ChatGPT

In fair Kent State, where intellects intertwine, There dwells a sage, Declan, from Ireland's line. A physicist profound in realms unseen, In heavy-ion collisions, his expertise keen.

Seventy years, a tapestry well-woven, In the quark-gluon plasma, his mind is proven. Directed flow, a measure of his art, In the quark coalescence, he played his part.

The zero-degree calorimeter, his craft refined, Shower max detector, secrets it defined. In the laboratory's hallowed domain, Declan's legacy, like stars, shall remain.