STAR

Zero-Degree Calorimeter Shower Max Detector and its Physics

Gang Wang

 (UCLA)

Over the past 20 years, the STAR detector subsystems have greatly evolved.

I was lucky enough to contribute to a small part, starting in 2003.

Flow: time-honored probe
Original predictions for flow: bounce-off /side-splash (v_{1}) and squeeze-out $\left(v_{2}\right)$

Off plane squeeze-out

nuclear shock wave models and ideal fluid dynamics
$\frac{d^{2} N}{d P_{t} d \phi}=\frac{d N}{d P_{t}}\left[1+\sum_{n=1}^{n=\infty} 2 v_{n}\left(y, P_{t}\right) \cos (n \phi)\right]$

$$
v_{n}=\langle\cos (n \phi)\rangle
$$

BEVALAC (1983), using "Plastic ball" spectrometer for $\mathrm{Nb}+\mathrm{Nb}$ at 400 MeV

Here, ϕ is the particle's azimuthal angle w.r.t the reaction plane.

The big picture

Below $\sim 100 \mathrm{MeV}$, attractive nuclear mean field: Projectile nucleons are deflected towards target \rightarrow negative v_{1} Rotating system of projectile and target, centrifugal force
\rightarrow positive v_{2}
Intermediate energies, individual n-n collisions \rightarrow a positive pressure:
Bounce-off and side-splash
Squeeze-out
High energies:
Shorter passage time \rightarrow smaller v_{1} Pressure on eccentricity \rightarrow Larger, positive v_{2}
J. -Y. Ollitrault, Nucl. Phys. A638, 195C (1998).

First v_{1} results from STAR

Three-particle cumulant, $\mathrm{v}_{1}[3]$, (isn't it just the y correlator?)

$$
\left\langle\cos \left(\phi_{a}+\phi_{b}-2 \phi_{c}\right)\right\rangle \approx v_{1, a} v_{1, b} v_{2, c}
$$

except charges aren't separated. $\stackrel{\circ}{5}$
 η

STAR: 10-70\%, Phys. Rev. Lett. 92 (2004) 062301 NA49: 12.5-33.5\%, Phys. Rev. C 68 (2003) 034903

Design of Zero Degree Calorimeters

- 18 meters vs 5 cm: almost zero degree
- 100 GeV vs 270 MeV : most spectators at $\sqrt{ } \mathrm{s}_{\mathrm{NN}}=200 \mathrm{GeV}$
- DX dipole magnet sweeps away protons, so only spectator neutrons are detected by the ZDCs.

Proposed Addition of an SMD to the STAR ZDCs

H. Crawford*, D. Keane ${ }^{\dagger}$, M. Kopytine ${ }^{\dagger}$, B. Surrow**, A. Tang ${ }^{\ddagger}$, S. Voloshin ${ }^{\S}$, G. Wang ${ }^{\dagger}$ and Z. Xu**
* UC Berkeley Space Sciences Laboratory
${ }^{\dagger}$ Kent State University
**Brookhaven National Laboratory
${ }^{\ddagger}$ Brookhaven National Laboratory / NIKHEF
${ }^{\S}$ Wayne State University

EXECUTIVE SUMMARY

We propose the addition of a Shower Max (one plane of 7 vertical slats and another of 8 horizontal slats) to the STAR Zero Degree Calorimeters, patterned after the ZDC-SMD already installed by PHENIX. This SMD would add significant capability to STAR in two areas of physics that are addressed in this document: collective flow and strangelet searching. New capabilities in spin physics are not addressed here. An ample manpower effort is available to implement this upgrade for RHIC run IV.

Aluminum box to support the
phototube and cable
interconnects. Side and end
views are shown.

MD scintillator

Simple Monte Carlo simulations on

 the performance of the proposed Shower Max Detectors.

Cosmic ray test

- high voltage over 1000 volts Each test took 8 hours
face beam
$20 C 5 M 1)$
East

Calibrations:

- Pedestal subtraction
- Gain correction
- Beam center ($\mathrm{p}_{\mathrm{T}}=0$)
- Event plane flattening

Method

improvement: Separate the measurement into four terms, each with its own corrections.

$$
\begin{aligned}
& v_{n _ \text {east_cos }}=\frac{1}{\left\langle\cos ^{2} n \varphi\right\rangle} \cdot \frac{\left\langle\cos n \varphi \cos n \psi_{\text {east }}\right\rangle}{\sqrt{2\left\langle\cos n \psi_{\text {east }} \cos n \psi_{\text {west }}\right\rangle}} \cdot \sqrt{\frac{\left\langle\cos n \psi_{\text {west }} \cos n \psi^{*}\right\rangle}{\left\langle\cos n \psi_{\text {east }} \cos n \psi^{*}\right\rangle}} \\
& v_{n_{\text {_east_sin }}}=\frac{1}{\left\langle\sin ^{2} n \varphi\right\rangle} \cdot \frac{\left\langle\sin n \varphi \sin n \psi_{\text {east }}\right\rangle}{\sqrt{2\left\langle\sin n \psi_{\text {east }} \sin n \psi_{\text {west }}\right\rangle}} \cdot \sqrt{\frac{\left\langle\sin n \psi_{\text {west }} \sin n \psi^{*}\right\rangle}{\left\langle\sin n \psi_{\text {east }} \sin n \psi^{*}\right\rangle}} \\
& v_{n_{-} \text {west_cos }}=\frac{1}{\left\langle\cos ^{2} n \varphi\right\rangle} \cdot \frac{\left\langle\cos n \varphi \cos n \psi_{\text {west }}\right\rangle}{\sqrt{2\left\langle\cos n \psi_{\text {east }} \cos n \psi_{\text {west }}\right\rangle}} \cdot \sqrt{\frac{\left\langle\cos n \psi_{\text {east }} \cos n \psi^{*}\right\rangle}{\left\langle\cos n \psi_{\text {west }} \cos n \psi^{*}\right\rangle}} \\
& v_{n_{\text {_west_sin }}}=\frac{1}{\left\langle\sin ^{2} n \varphi\right\rangle} \cdot \frac{\left\langle\sin n \varphi \sin n \psi_{\text {west }}\right\rangle}{\sqrt{2\left\langle\sin n \psi_{\text {east }} \sin n \psi_{\text {west }}\right\rangle}} \cdot \sqrt{\frac{\left\langle\sin n \psi_{\text {east }} \sin n \psi^{*}\right\rangle}{\left\langle\sin n \psi_{\text {west }} \sin n \psi^{*}\right\rangle}}
\end{aligned}
$$

$v_{1} @ 62 \mathrm{GeV}$ in $\mathrm{Au}+\mathrm{Au}$

The first STAR paper for which I played a leading role: Phys. Rev. C 73 (2006) 34903 v_{1} at forward rapidities:
reasonably well reproduced by models v_{1} at midrapidities:
statistically significant confirmed with 3 approaches $1^{\text {st }}$ attempt to PID v1.

Milestones:

- Aug. 2001, started Ph.D. program (Kent)
- Feb. 2003, married and joined STAR
- Nov. 2003, built ZDC-SMDs at BNL
- June 2004, daughter
- Nov. 2004, first talk (DNP, Chicago)
- Aug. 2005, first QM talk (Budapest)
- Dec. 2005, defended my thesis June 2006, degree!

In May 2006, I joined UCLA as a postdoc, starting new works like heavy quarks and the chiral magnetic effect. However, my collaboration with Declan and my use of the ZDC-SMDs continued to thrive.

STAR: Phys. Rev. Lett. 101 (2008) 252301
STAR: Phys. Rev. Lett. 108 (2012) 202301

Equation of State without phase transition (PT): a monotonic trend

Equation of State assuming 1st-order PT: a dip in v_{1} as a function of beam energy

STAR, Phys. Rev. Lett. 112 (2014) 162301

Coalescence sum rule

Assumptions:

- v_{1} is developed in prehadronic stage - Hadrons are formed via coalescence:

$$
\begin{aligned}
& \left(v_{\mathrm{n}}\right)_{\text {hadron }}=\sum\left(\mathrm{v}_{\mathrm{n}}\right)_{\text {constituent quarks }} \\
- & \left(\mathrm{v}_{1}\right)_{\mathrm{u}}=\left(\mathrm{v}_{1}\right)_{\mathrm{d}} \text { and }\left(\mathrm{v}_{1}\right)_{\mathrm{s}}=\left(\mathrm{v}_{1} \frac{\mathrm{~d}}{}\right.
\end{aligned}
$$

- Constituent quarks of anti-p, anti- Λ and K^{-}are all produced in the collision.
- For anti- $\wedge s$, prediction using coalescence sum rule agrees with measured v_{1} above $\sqrt{ } \mathrm{s}_{\mathrm{NN}}=11.5 \mathrm{GeV}$.
- Disagreement at 7.7 GeV implies the failure of one or more of the assumptions below 11.5 GeV .

v_{1} of transported $u(d)$ quarks

$\left(\mathrm{v}_{1}\right)_{\text {trans. } \mathrm{u}(\mathrm{d})}=\left[\left(\mathrm{v}_{1}\right)_{\text {net } \mathrm{p}}-\left(3-\mathrm{N}_{\text {trans. } \mathrm{u}+\mathrm{d}}\right) *\left(\mathrm{v}_{1}\right)_{\bar{u}(\mathrm{~d})}\right] / N_{\text {trans. }}$ u+d

G. W. [STAR]: Nucl. Phys. A 982 (2019) 415

v_{1} of transported $u(d)$ is positive for all beam energies. A minimum at $\sim 14.5 \mathrm{GeV}$

EM fields in heavy-ion collisions

Strongest man-made

 magnetic field: -eB ${ }_{y}$ ~ 10^{18} Gauss (rough estimate for 200 GeV $A u+A u$ at $b=5 \mathrm{fm}, \mathrm{t}=0$)quark gluon plasma
electri
ectric field
nuclear fragments

Earth
~0.5 Gauss

STAR magnet ~5000 Gauss

Neutron Star (Magentar)
~ 10^{14} Gauss

Heavy ion collisions
~ 10^{18} Gauss

Evidence of Coulomb field:

spectator-proton

v1 in $\mathrm{Cu}+\mathrm{Au}$ at 200 GeV

[^0]
Interplay between all known effects

Illustration for v_{1} slope difference between protons and antiprotons.

- Transported quarks always give a positive value.
- Theory predicts Faraday+Coulomb > Hall: net EM effect is negative.
- The sign change from positive (central collisions) to negative (peripheral) will signify of Faraday+Coulomb effect.

v_{1} splitting and sign change:

Faraday + Coulomb > Hall + Transported Quarks

And many more: the chiral magnetic effect

And many more: hyperon global polarization

ZDC-SMD: maybe the most cost-effective subsystem in STAR

Utilizing as many spare parts from others' leftover as possible, the cost was only around $\$ 5 \mathrm{k}$!

The aforementioned works only form a fraction of the STAR publications related to the ZDC-SMDs over the past 20 years.

STAR, Phys. Rev. C 76 (2007) 11901
FIG. 4: (Color online) The distribution of RMS from east SMD (left) and west SMD (right).

Spin alignment

Beam polarization

A poem by ChatGPT

In fair Kent State, where intellects intertwine, There dwells a sage, Declan, from Ireland's line. A physicist profound in realms unseen, In heavy-ion collisions, his expertise keen.

Seventy years, a tapestry well-woven, In the quark-gluon plasma, his mind is proven. Directed flow, a measure of his art, In the quark coalescence, he played his part.

The zero-degree calorimeter, his craft refined, Shower max detector, secrets it defined. In the laboratory's hallowed domain, Declan's legacy, like stars, shall remain.

[^0]: STAR, Phys. Rev. Lett. 118 (2017) 12301

