Advances in Nuclear Matter Dynamics: A Tribute to Declan Keane

The many facets of directed flow in heavy-ion collisions

Sooraj Radhakrishnan Kent State University/Lawrence Berkeley National Laboratory Kent, December 1, 2023

STAR and Declan directing the flow!

- Directed flow in Au+Au collisions at sqrt(sNN)=62 GeV - PRC (2006)
- Directed flow at the Relativistic Heavy-Ion Collider: incident-energy and system-size dependence - PRL (2008)
- Directed and Elliptic Flow of Charged Particles in Cu+Cu Collisions at $\operatorname{S}_{NN} = 22.4 \text{ GeV}$ - PRC (2012)
- Directed flow in Au+Au collisions at $\operatorname{S}_{NN} = 7.7, 11.5, 19.6, 27 and 39 GeV$ **PRL** (2014)
- PRL (2018)
- Observation of D0 directed flow in 200 GeV Au+Au collisions at RHIC PRL (2020)
- Flow and interferometry results from Au+Au collisions at sqrt(sNN) = 4.5 GeV PRC (2021)
- RHIC Submitted (2023)

Beam-Energy Dependence of Directed Flow of lambda's, K's, Kshort, and phi in Au+Au Collisions

• Electric charge and strangeness dependent directed flow of produced quarks in Au+Au collisions at

STAR and Declan directing the flow!

STAR and Declan directing the flow!

- Directed flow in Au+Au collisions at sqrt(sNN)=62 GeV - PRC (2006)
- Directed flow at the Relativistic Heavy-Ion Collider: incident-energy and system-size dependence - PRL (2008)
- Directed and Elliptic Flow of Charged Particles in Cu+Cu Collisions at $\operatorname{S}_{NN} = 22.4 \text{ GeV}$ - PRC (2012)
- Directed flow in Au+Au collisions at $\operatorname{S}_{NN} = 7.7, 11.5, 19.6, 27 and 39 GeV$ **PRL** (2014)
- PRL (2018)
- Observation of D0 directed flow in 200 GeV Au+Au collisions at RHIC PRL (2020)
- Flow and interferometry results from Au+Au collisions at sqrt(sNN) = 4.5 GeV PRC (2021)
- RHIC Submitted (2023)
- Proton directed flow in BES-II (Ongoing)

Sooraj Radhakrishnan

Beam-Energy Dependence of Directed Flow of lambda's, K's, Kshort, and phi in Au+Au Collisions

• Electric charge and strangeness dependent directed flow of produced quarks in Au+Au collisions at

Directed flow (v₁) - a versatile observable!

One of the first measured quantities in heavy-ion experiments

Rapidity odd v_1 — linked to EoS of matter and its softening

From density fluctuations — rapidity even v₁

Charge dependent splitting — initial B field

Hard-soft asymmetry in initial density distribution — energy loss

Directed flow from density fluctuation

- Shows up in the first harmonic coefficient of azimuthal pair correlations
- HIJING has only momentum conservation
- AMPT also has flow from density fluctuations

$$v_{1,1}(p_{\rm T}^{\rm a}, p_{\rm T}^{\rm b}) = v_1(p_{\rm T}^{\rm a})v_1(p_{\rm T}^{\rm b}) - cp_{\rm T}^{\rm a}p_{\rm T}^{\rm b}$$

SR et al. <u>arXiv:1203.3410</u>

Directed flow from density fluctuations in A+A

- Central A+A collisions show clear signature of v_1 from density fluctuations
- Peripheral collisions don't
- A two component fit can be used to extract the v_1 as function of p_{T}

Directed flow from density fluctuations in p+A!

- A non-zero v₁ from density fluctuations can be extracted in high multiplicity p+A collisions also!
- Strongly supports the density anisotropy driven origin of long range correlations in p+Pb

Sooraj Radhakrishnan

extracted in high multiplicity p+A collisions also! n origin of long range correlations in p+Pb

Directed flow of charm hadrons

- Original motivation was to look for impact of strong B field in heavy ion collisions
 - Charm quarks produced early in the collisions, can be sensitive to the early time strong B fields
 - Will produce opposite deflections for D⁰ and D⁰bar

 Predicted splitting for charm hadrons order of magnitude larger than that for light flavor hadrons • With STAR HFT we had a chance to look for this effect

Also a geometric origin

Backward going participants

Forward going participants

M. Gyulassy et al. Phys. Rev. C 72, 034907

Also a geometric origin

Backward going participants

- Asymmetry in forward and backward going participants
- Causes tilt along impact parameter direction of the QGP bulk
- Hard-scattering profile not titled
- Induces large v₁ for heavy flavor hadrons

Forward going participants

<u>D^o directed flow in Au+Au collisions</u>

 Order of magnitude larger v₁ observed for D mesons compared to that for kaons

Sooraj Radhakrishnan

 Large magnitudes predicted by hydro models taking into account initial offset in density distributions

<u>Charge dependent splitting?</u>

- No splitting observed within uncertainties
- answer

Sooraj Radhakrishnan

• Current uncertainties are large, future measurements (sPHENIX, ALICE ...) could give a definitive

Directed flow of other hard probes

- Also measured for charm decayed electrons
- Mean p_T of parent charm and D^0 in the analyzed kinematics close to each other
- Comparable magnitude to $D^0 v_1$, but much more significant
- Confirms the picture of v₁ origin from hard-soft asymmetry

Directed flow of jets/high p_T hadrons

- Different path lengths through medium for patrons going along +x and -x as function of rapidity
- Can produce v₁ for jets from path length dependent energy loss

Sooraj Radhakrishnan

Spectators

- Driven by path length dependent energy loss

Proton directed flow and STAR BES-II

STAR, Phys. Rev. Lett. 112 (2014) 162301

Sooraj Radhakrishnan

Higher statistics data from BES-II to explore further

STAR BES-II

Can we understand proton directed flow better?

- Two contributions for proton directed flow:
 - from tilted source during expansion stage
- Can we separate these two components?

Sooraj Radhakrishnan

positive contribution during initial compression stage, anti-flow (negative contribution)

Can we understand proton directed flow better?

- Two contributions for proton directed flow:
 - from tilted source during expansion stage
- Can we separate these two components?
 - Initial flow contributes to transported protons
 - Later medium component contributes to both protons and anti-protons

$$N_p v_1(p) = N_p v_1(\bar{p}) + (N_p - N_{\bar{p}}) v_1^{excess}(p) \qquad v_1^{excess}(p) = (v_1(p) - v_1(\bar{p})) / (1 - N_{\bar{p}}) / ($$

Sooraj Radhakrishnan

anti-flow from tilted source

• positive contribution during initial compression stage, anti-flow (negative contribution)

<u>Two components of proton directed flow</u>

- Different beam energy dependence for the two components
- Scaling observed for $v_{1,excess}$ between 200 and 19.6 GeV. No scaling for medium component

Scaling of the initial component vs beam energy

Sooraj Radhakrishnan

$N_{p}v_{1}(p) = N_{p}v_{1}(\bar{p}) + (N_{p} - N_{\bar{p}})v_{1}^{excess}(p)$

- Scaling for v_{1,excess} found to hold till collision energy ~10 GeV
- Breaking of scaling at 7.7 GeV
- Change in medium/collision dynamics at 7.7 GeV

Hadronic transport model studies

- Vastly different values for the two components between different modes, but proton v_1 similar
- More sensitivity to change in medium dynamics/EoS than just looking at proton v_1

Comparison to data

o <i>tons</i> htrality						
,						
ary						

- JAM mean field (incompressibility = 380 MeV) calculations closer to data for 14.6 and 19.6 GeV
- Cannot simultaneously describe low energy and high energy results with the same equation of state
- More measurements to come from BES-II
- Will help constrain EoS at high μ_{B}
- Also important for studies of baryon transport

Jmmary

- to provide crucial insights into heavy-ion collisions
- Heavy flavor directed flow order of magnitude larger than light flavor
- Promising tool to search for presence of strong B field in heavy-ion collisions
- Non-zero hight p_T charged hadron v_1 arising from path length dependent energy OSS
- Proton directed flow can be decomposed into an initial component contributing primarily to transported protons and medium component contributing to all
 - Initial component is positive and constant from 200 10 GeV

 - describe data at 7.7 GeV and above

• Directed flow one of oldest measured quantities in heavy-ion collisions, still continues

• Rapidity even v_1 in small systems — anisotropies driven by initial density fluctuations

• Deviates from constant value at 7.7 GeV — change in medium/collision dynamics • More sensitive to medium EoS. Mean field calculations cannot simultaneously

A Thank You to Declan

- Founding member of STAR Collaboration
- Declan has been chair of 14 GPCs and member/PA of another 51 GPCs for STAR!! Also many other roles for the collaboration
- Over the last few years, been my great pleasure to have collaborated and worked with you
- Wish you good health and more exciting research ahead!!

Back Up

Exploring charge dependent splitting with coalescence model

Index	Quark mass	Δq	ΔS	Δv_1 combination	$F_{\Delta} \times 10^4 \ (27 \ { m GeV})$	$F_{\Delta} \times 10^4 \ (200 \ { m GeV})$
1	$\Delta m = 0$	0	0	$[ar{p}(ar{u}ar{u}ar{d})+\phi(sar{s})]-[K^{-}(ar{u}s)+ar{\Lambda}(ar{u}ar{d}ar{s})]$	$03\pm43\pm13$	$56\pm49\pm41$
2	$\Delta m pprox 0$	1	2	$[\bar{\Lambda}(ar{u}ar{d}ar{s})] - [rac{1}{3}\Omega^{-}(sss) + rac{2}{3}ar{p}(ar{u}ar{u}ar{d})]$	$41\pm25\pm16$	$19\pm13\pm01$
3	$\Delta m pprox 0$	$\frac{4}{3}$	2	$[ar{\Lambda}(ar{u}ar{d}ar{s})] - [K^{-}(ar{u}s) + rac{1}{3}ar{p}(ar{u}ar{u}ar{d})]$	$39\pm07\pm03$	$16\pm05\pm03$
4	$\Delta m = 0$	2	6	$[\overline{\Omega}^+(ar{s}ar{s}ar{s})]-[\Omega^-(sss)]$	$83\pm130\pm25$	$35\pm58\pm54$
5	$\Delta m pprox 0$	$\frac{7}{3}$	4	$[\overline{\Xi}^+(\bar{d}\bar{s}\bar{s})] - [\bar{K}(\bar{u}s) + \frac{1}{3}\Omega^-(sss)]$	$64\pm 36\pm 19$	$26\pm20\pm04$

Sooraj Radhakrishnan

 Assuming coalescence sum rules hold for v₁ of produced particles, can make combination of hadrons to study v₁ splitting vs charge

Observes non-zero slope
Could be reflecting the splitting induced by B field

<u>Charge dependent splitting?</u>

Au+Au √s_{NN}=200 GeV, 10-80%

- No splitting observed within uncertainties
- answer

Sooraj Radhakrishnan

• Current uncertainties are large, future measurements (sPHENIX, ALICE ...) could give a definitive

Directed flow of jets/high p_T hadrons

- Different path lengths through medium for patrons going along +x and -x as function of rapidity
- Can produce v₁ for jets from path length dependent energy loss

