Observation of antihypertriton in Au+Au collisions at 200 GeV -- the antinuclei journey with Prof. Keane

Jinhui Chen

Fudan University, Shanghai, China

STAR Col. Science **328**, 58 (2010) STAR Col. Nat. Phys. **16**, 409 (2020) J. Chen, D. Keane, Y.-G. Ma, A. Tang, Z. Xu, Phys. Rept. **760**, 1 (2018)

. . .

Outline

★ First of all, Happy 70th Birthday!

Introduction to the antinuclei study

★ Focus on the antihypertriton

★ Summary

Introduction

in 2009, we said:

- ★ Hypernuclei: ideal lab for YN and YY interaction
 - Baryon-baryon interaction with strangeness sector
 - Input for theory describing the nature of neutron stars
- ★ No anti-hypernuclei have ever been observed
- Coalescence mechanism for production: depends on overlapping wave functions of Y+N at final stage
- Anti-hypernuclei and hypernuclei ratios: sensitive to antimatter and matter profiles in HIC
 - Extension of the nuclear chart into anti-matter with S^[1]

[1] W. Greiner, *Int. J. Mod. Phys. E 5 (1995) 1*

STAR has measured antinuclei in run1

VOLUME 87, NUMBER 26 PHYSICAL REVIEW LETTERS 24 DECEMBER 2001

 \overline{d} and ³He Production in $\sqrt{s_{NN}} = 130$ GeV Au + Au Collisions

★ 14 anti-³He based on 0.6M central Au+Au at 130 GeV

Collect giant data with run4 + run7

Theory curve: *Phys. Lett. B* 667 (2008) 1

★ Select pure ³He sample: ³He: 5810 counts

anti-³He: 2168 counts

condition: -0.2<z<0.2 & dca<1.0cm & p>2 GeV/c...

Extend the antinuclei study with v0

$^{3}_{\Lambda}$ H signal from the data

\star Signal observed from the data (bin-by-bin counting): **157**±**30**;

STAR

Mass: $2.989 \pm 0.001 \pm 0.002$ GeV; Width (fixed): 0.0025 GeV.

t Projection on anti-hypertriton yield: $\frac{3}{\Lambda}\overline{H} = \frac{3}{\Lambda}H \times \overline{H}e/^{3}He = 157*2168/5810 = 59 \pm 11$

$\frac{3}{4}\overline{H}$ signal from the data

STAR

Signal observed from the data (bin-by-bin counting): 70 ± 17 ; Mass: 2.991 \pm 0.001 \pm 0.002 GeV; Width (fixed): 0.0025 GeV.

Combined the signal

 \bigstar

STAR

Combined hyperT and anti-hyperT signal : 225 ± 35 ;

It provides a $>6\sigma$ significance for discovery.

A beautiful event and the PR

STAR

- Anti-hyperT : anti-proton, anti-neutron & anti- Λ the first antinucleus with strangeness, and the heaviest antinucleus until 2011.
- After searching >100 million AuAu collisions, found 70 anti-hyperT.
 - Published in Science in March 2010; much favorable PR for STAR & RHIC. News stories in Nature, Scientific American, National Geographic, many news outlets worldwide.

3-D Chart of the Nuclides

Extension of the Chart of the Nuclides into

antimatter with Strangeness sector

Out of >800 peerreviewed papers from all Brookhaven programs in 2010, antimatter paper in Science was named by lab management in Jan 2011 as one of the "top 5 for 2010"

The physics people may discuss by measuring antinuclei:

- \star What type of matter is in interior of collapsed stars?
- What happened to antimatter created in the Big Bang?

Implications for cosmic ray searches for new physics.

The lifetime quest

10⁻¹

First measurement of the lifetime in HIC and stimulate studies from other experiments.

STAR

"a measurement to a precision of a few percent will guide and constrain the theoretical input leading to a more precise determination of the YN interaction, eventually contributing to solving the hyperon puzzle"

Data in heavy-ion collisions

Exponential fit (p = 0.2)

 $\tau = (236.4 \pm 8.1) \text{ ps} (S = 1.1)$

14

From $\boldsymbol{\tau}$ to Λ separation energy

Dalitz's comment on the lifetime "I feel that we are far from seeing the end of this road. A good deal of theoretical work on this 3-body system would still be well justified."

Nucl. Phys. A 754, 14 (2005)

 \star The early data suffers from large statistical uncertainty!

STAR

A serves as a calibrated probe to understand the momentum distortion

$$B_{\Lambda} = 0.41 \pm 0.12 (\text{stat.}) \pm 0.11 (\text{syst.}) \text{ MeV}$$

$$^{3}_{\Lambda}H$$
 $^{3}_{\bar{\Lambda}}H$

 \star STAR data differs from zero (3.4 σ) and larger than the prior measurements from 1973

Theoretical calculations span in a wide range

 $V c^{-2}$

Correlated the τ and the B_{Λ}

J. Chen, X. Dong, Y.-G. Ma, Z. Xu, arXiv:2311.09877

 \star The ideogram presentation of the data points shows a large spread of the values

The weighted average value is consistent with predictions, considering the uncertainties associated in calculations

The CPT test

Improved precision on the test

STAR

Summary

photo from web page of ~2009

Our captain of the antinuclei journey

 \star We have observed the 1st antihypernucleus, we have seen many interesting physics

- \star How does his mentorship shape my career?
 - ✤ the 2009 project guaranteed a professor position
 - the 2020 measurement won the competition of NSFC for Distinguished Young Scholars
 - Wish you good health and looking forward to another 15-year journey