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Perturbation Theory

𝒪(g) ∼ c0 + c1g + c2g2 + …

Perturbation theory is a ubiquitous (often the only) 
analytical tool we have in quantum field theory 

Most of the time the calculation of coefficients are 
challenging, they have to be regularized, renormalized etc… 

But after all the dust settles we still have to deal with 
another problem: 

cn ∼ n!typically

Perturbative series has zero radius of convergence
We have to give meaning to the sum above  

[Dyson, ’52]
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Perturbation Theory
𝒪(g) ∼ ∑

n

cngn, cn ∼ n!

log(cngn)

n

Partial sums eventually diverge! 
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Perturbation Theory

“Divergent series are the invention of the devil, and it is shameful to base on them any 
demonstration whatsoever…”

Niels Abel, 1828
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Perturbation Theory

“Divergent series are the invention of the devil, and it is shameful to base on them any 
demonstration whatsoever… Yet for the most part, the results are valid, it is true, but it is a 

curious thing. I am looking for the reason, a most interesting problem”

Niels Abel, 1828
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Perturbation Theory

“Divergent series are the invention of the devil, and it is shameful to base on them any 
demonstration whatsoever… Yet for the most part, the results are valid, it is true, but it is a 

curious thing. I am looking for the reason, a most interesting problem”

Niels Abel, 1828

(1802-1829)
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Divergent -Asymptotic Series
𝒪(g) ∼ ∑

n

cngn, cn ∼ n!

n
N~1/g

log(cngn)

"optimal truncation'': 𝒪(g) ≈
N−1

∑
n=0

cngn + RN(g) error: RN(g) ∼
N!
gN

∼ e−1/g
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Divergent -Asymptotic Series

"optimal truncation'': 𝒪(g) ≈
N−1

∑
n=0

cngn + RN(g) error: RN(g) ∼
N!
gN

∼ e−1/g

𝒪(g) ∼ ∑
n

cngn, cn ∼ n!

n
N~1/g

log(cngn)

Non-perturbative physics?🤔
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Quartic Oscillator
H =

1
2

p2 +
1
2

x2 + gx4 V(x)

x

E(g)= harmonic oscillator + corrections(g)

N

∑
n=0

cngn

e−1/(3g)
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Egr(g) =
1
2

+
3
4

g −
21
8

g2 +
333
16

g3 −
30885
128

g4 + … cn ∼ 3nn!



10

Divergent -Asymptotic Series
The way that perturbation series diverges contains non-

perturbative information  

Let’s first introduce the basic tools

One can systematically go beyond optimal truncation via 
the theory of resurgence

It relates perturbative and non-perturbative physics 
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Borel Resummation
We can convert the problem of summing a divergent series 

into a problem of complex analysis of analytic functions

𝒪(g) ∼ ∑
n

cngn : divergent 𝒪̂(s) = ∑
n

cn

n!
sn : convergent

ℬ𝒪(g) =
1
g ∫

∞

0
dse−s/g𝒪̂(s)

g

essential singularity
at origin 😱

s

analytic at origin 😎
singularities in complex plane

Borel resummation:

Borel 
Transform
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Quartic Oscillator
V(x)

x

Egr(g) =
1
2

+
3
4

g −
21
8

g2 +
333
16

g3 −
30885
128

g4 + …

|Eexact − Eoptimal |

Eexact
= 0.018

|Eexact − EBorel−Pade |
Eexact

≈ 6 × 10−43 terms:3 terms:

ℬEgr(g) =
1
g ∫

∞

0
dse−s/g ̂Egr(s)

can be resummed by conventional methods (Pade etc..)
no singularities along s>0

|Eexact − EBorel−Pade |
Eexact

≈ 2 × 10−810 terms:

Borel Resummation (g=0.1)Optimal Truncation (g=0.1)

Adding more terms makes it worse…



13

Stark Effect 

[A. S. Stodolna et al,
PRL 110, 213001 (2013)] 

Egr

Eh
≈ −

1
2

− 2.25 ( E
ℰc )

2

− 55.54 ( E
ℰc )

4

+ …

Eh =
e4me

ℏ2
= 27.2eV ℰc =

e5m2
e

ℏ4
= 51V/Å

Ground state energy of hydrogen atom in constant electric field E

[Silverstone, ’78]

cn ∼
(2n)!
(2/3)n

Factorial growth
Non-alternating 



14

Stark Effect 
̂Egr(s) =

∞

∑
n=0

En

(2n)!
s2n

ImEgr ∼ e− 2
3

ℰc
E Tunneling ionization rate!

Divergence of 
perturbation series 

Singularities in 
Borel plane

Non-perturbative physics 

ℬEgr(E) =
1
E ∫

∞

0
dse−sℰc/E ̂Egr(s)

no need to panic…

2/3
s

singularity
along the integration contour! 😱?

cn ∼
(2n)!

(2/3)2n ssing. =
2
3
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QFT example: Euler-Heisenberg 
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πs
π

Effective action for QED in a constant electromagnetic background

+ + + …ℒ =

ℒ =
1
2

⃗E 2 +
e4ℏ2

360π2c6m4
e

⃗E 4 +
e6ℏ4

630π2c12m8
e

⃗E 6 + … =
∞

∑
n=0

cn ( E
ℰc )

2n

ℰc =
m2

e c3

ℏe
for B=0

[Euler, Heisenberg ‘36]

Borel plane

closest singularity



16

Euler-Heisenberg 

ℰc =
m2

e c3

ℏe
= 1.32 × 1018V/m

s
π

Imℒ ∼ e−π ℰc
E

Schwinger pair production rate

Effective action for QED in a constant electromagnetic background

+ + + …ℒ =

[Euler, Heisenberg ‘36]

Borel plane

closest singularity

ℒ =
1
2

⃗E 2 +
e4ℏ2

360π2c6m4
e

⃗E 4 +
e6ℏ4

630π2c12m8
e

⃗E 6 + … =
∞

∑
n=0

cn ( E
ℰc )

2n

ℰc =
m2

e c3

ℏe
for B=0
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Double well 
H =

1
2

p2 +
1
2

x2(1 − gx)2

Egr(g) =
1
2

− g −
9
2

g2 −
89
2

g3 −
5013

8
g4 + …

V(x)

x

1/3
s

singularity
along the integration contour! 😱

ImEgr ∼ ± e− 1
3g ?

No instability: Egr must be real
Choice of the contour is ambiguous
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Double Well: Instantons to the Rescue

SI =
1
6

Instanton action:

x(tE)

tE
−x*

x*

instanton anti
instanton

Δt

tIĪ ⇒ log ℏ e− 2Sinst
ℏ

V(x)

x
-x* x*

Non-perturbative contributions to the path integral

∼ e− 2SI
gDouble tunneling

Path integral sums over all separations (quasi-zero mode)
Quasi-zero mode integral is ill defined for g>0

Evaluate at g<0, analytically continue to g>0 [Bogomolnyi, Zinn-Justin ‘80s]

The result is 2-fold ambiguous:                             .
ImEIĪ ∼ ∓ e− 2SI

g

``instanton-anti-instanton”
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Double Well: Instantons to the Rescue
ImEpert. + ImEIĪ = 0 up to 𝒪(e−4SI /g)

tIĪ ⇒ log ℏ e− 2Sinst
ℏ

Resurgence: 
Perturbative + non-perturbative fluctuations can be 

meaningfully resummed
 There are quantitative relations between 

perturbative and non-perturbative sectors   

Borel resummation of
perturbation series
(2-fold ambigious)

Non-perturbative 
 instanton gas 

(2-fold ambigious)
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Supernumerary rainbows

[image: J. Bahrdt wiktionary.org]

ImEpert. + ImEIĪ = 0 up to 𝒪(e−4SI /g)

Why does this happen?

http://wiktionary.org
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Supernumerary rainbows

Ai(x) =
1
π ∫

∞

−∞
dt cos ( t3

3
+ xt)

[image: B. Casselman, ams.org, The Mathematics of the Rainbow, Part II]

Cubic 
wavefront

ϕ

😎

Ai(x)

x

http://ams.org
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Airy equation
Airy : convergent expansion around x=0

-10 -8 -6

Ai(x) ∼
1

2 πx1/4
e− 2

3 x2/3

Ai(x) ∼
1

π |x |1/4
cos ( 2

3
|x |2/3 −

π
4 )

[On the intensity of light in the 
neighbourhood of a caustic, 1838]

[On the numerical calculation of a class of 
definite integrals and infinite series, 1850]

20 terms

1 term

Stokes: asymptotic expansion x → ∞

x → − ∞ x → ∞
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Stokes’ puzzle 

0

Ai(x)

x

e− 2
3 x2/3

cos ( 2
3

|x |2/3 −
π
4 )

two exponents one exponent

Ai(x) =
1
π ∫

∞

−∞
dtei( t3

3 + xt)

Stokes was puzzled by the fact that the same function is 
represented by two exponentials on one side and one 

exponential on the other side
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Stokes’ puzzle 

Stokes’ letter to his fiancee
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Stokes phenomenon

x

The ``coupling constant” in Stokes’ asymptotic expansion is x−3/2

Stokes line: The new exponent is born when it is crossed
(exponentially small compared to the other one)

1 exponent2 exponents

The direction of Borel integration is determined by θ = argx

θ = π

Both exponents have 
 equal magnitude

[On the discontinuity of arbitrary constants that 
appear as multipliers of semi-convergent series, 1902]

s

θ = 2π/3 − ϵ

θ = 2π/3 + ϵ

θ = 0

1 exponent

2 exponents

cross Stokes line

θ = π
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Resurgence 
ImEpert. + ImEIĪ + ImEIĪIĪ + … = 0

These ambiguities occur because g>0 is a Stokes line! 
For an un-ambiguous, well defined expansion we have to 
incorporate the exponentially small terms from the start  

𝒪(g) = ∑
n

cngn + ∑
n,k,l

c(k,l)
n (e−a/g)k(log g)l “Trans-series”

[J. Écalle, ‘80s]

Resurgence is a framework which consistently keeps 
track of all the Stokes phenomena to all orders

quantifies the relations between  and cn c(k,l)
n

perturbative non-perturbative
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Resurgence 
V(x)

x

Egr(g) =
1
2

− g −
9
2

g2 −
89
2

g3 −
5013

8
g4 + …

cn ∼ 3n (1 −
53
6

.
1
3

.
1
n

−
1277
72

.
1
32

.
1

n(n − 1)
+ …)

ImE ∼ e− 1
3g (1 −

53
6

g−
1277
72

g2 + …)

Perturbative expansion

Fluctuations around instanton-anti-instanton
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Resurgence 

“…resurgent functions display at each of their singular points a behaviour closely related to 
their behaviour at the origin. Loosely speaking, these functions resurrect, or surge up - in a 

slightly different guise, as it were - at their singularities” 

Écalle, ‘80s
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Periodic potential (Mathieu)

H =
1
2

p2 + cos x

Perturbative expansion :(ℏN ≪ 1)

EN(ℏ) ∼ − 1 + ℏ [N +
1
2 ] −

ℏ2

16 [(N +
1
2 )

2

+
1
4 ] −

ℏ3

162 [(N +
1
2 )

3

+
3
4 (N +

1
2 )] − …

harmonic oscillator + corrections 

V(x)

x
..
.

N: level number 
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Non-perturbative sector 
 has a resurgent trans-series expansion for EN(ℏ) ℏN ≪ 1

cn(0) ∼
n!
16n (1 −

5
2

⋅
1
n

−
13
8

⋅
1

n(n − 1)
− …)

Im E0(ℏ) ∼ π exp [−
8
ℏ ] (1 −

5
2

⋅ ( ℏ
16 )

2

−
13
8

⋅ ( ℏ
16 )

4

− …)

SI = 8instanton action:

V(x)

x

Large order growth (ground state)

Fluctuations around instanton - anti-instanton
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Non-perturbative sector 
The physical spectrum has
exponentially small bands for

  Nℏ ≪ 1

ΔEband
N ∼

2
π

24(N+1)

N! ( 2
ℏ )

N−1/2

exp [−
8
ℏ ] 1 −

ℏ
32 [3 (N +

1
2 )

2

+ 4 (N +
1
2 ) +

3
4 ] + O(ℏ2)

Ept
N (ℏ) ∼ − 1 + ℏ [N +

1
2 ] −

ℏ2

16 [(N +
1
2 )

2

+
1
4 ] −

ℏ3

162 [(N +
1
2 )

3

+
3
4 (N +

1
2 )] − …

Perturbative expansion: center of the band

Non-perturbative expansion: width of the band

V(x)

x...
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Non-perturbative sector 

ΔEband
N ∼

∂Ept
N

∂N
exp −

8
ℏ

1 +
ℏ

162 (3K2 +
3
4 ) −

ℏ2

163 (5K3 +
17K

4 ) −
ℏ3

164 ( 55K4

4
+

205K2

8
+

135
64 )

Perturbative expansion: center of the band

Non-perturbative expansion: width of the band

K = N + 1/2

Ept
N (ℏ) ∼ − 1 + ℏK −

ℏ2

16 (K2 +
1
4 ) −

ℏ3

162 (K3 +
3
4

K) −
ℏ4

163 ( 5K4

2
+

17K2

4
+

9
32 )

−
ℏ5

164 ( 33K5

4
+

205K3

8
+

405K
64 ) − …

density of states

the coefficients look suspiciously similar…🤔
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P=NP

ΔEband
N ∼

∂Ept
N

∂N
exp [−

1
2

AN(ℏ)]̂Ept
N(ℏ) ∼ K −

ℏ
16 (K2 +

1
4 ) −

ℏ2

162 (K3 +
3
4

K) − …

Perturbative expansion Non-perturbative expansion

[Zinn-Justin, Jentschura, ‘04]

∂ ̂Ept
N

∂N
= −

ℏ
16 (2K + ℏ

∂AN

∂ℏ )
[Hoe, D'etat et al. ’81,
 Alvarez, Casares ’00,
Dunne, Ünsal, ’14,…]

Low order terms in 
perturbative series

Low order terms in 
fluctuations around instantons

All non-perturbative data is encoded in perturbative expansion! 
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(S1(E; ℏ) − ℏ
S1(E; ℏ)

∂ℏ ) ∂S2(E; ℏ)
∂E

− (S2(E; ℏ) − ℏ
S2(E; ℏ)

∂ℏ ) ∂S1(E; ℏ)
∂E

= iSI

Geometric origin of P=NP 

S1(E; ℏ) = ∮γ1

P(E, ℏ)

γ1 γ2

V(x)

xE

WKB actions:

P(E, ℏ) ∼ 2(E − V ) −
ℏ2

26

2(V′￼)2

(E − V )5/2
− …

S2(E; ℏ) = ∮γ2

P(E, ℏ)

perturbative non-perturbative (tunneling)

[GB, Dunne ’15] [Codesido,Marino, Schiappa ’18] holomorphic anomaly,
[Gorsky, Milkehin, ’14] Whitham hierarchy 

γ1
γ2

related to SUSY gauge theories, topological string theory,….
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Connecting weak and strong coupling

Nℏ ≪ 1

Nℏ ≫ 1

even

odd
band

0.2 0.4 0.6 0.8
ℏ

0.5

1.0

1.5

2.0

EN(ℏ)

gap

“weak coupling”

“strong coupling”

35

P=NP relation holds everywhere in the spectrum!
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Connecting weak and strong coupling

Nℏ ≪ 1

Nℏ ≫ 1

even

odd
band

0.2 0.4 0.6 0.8
ℏ

0.5

1.0

1.5

2.0

EN(ℏ)

gap

“weak coupling”

“strong coupling”

36

P=NP relation holds everywhere in the spectrum!
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Transmutation of trans-series

ℏ

0.2 0.4 0.6 0.8
ℏ

0.5

1.0

1.5

2.0

EN(ℏ)

⋮

ℏ

ΔEN Ept
N (ℏ)

zoom in…
narrow gaps

E(ℏ) ∼
ℏ2

2 (N2 +
1

8(N2 − 1) ( 1
ℏ )

4

+
5N2 + 7

512(N2 − 1)3(N2 − 4) ( 1
ℏ )

8

+ …) ± 1
2N−2Γ2(N )ℏ2N−2 (1 + 𝒪(ℏ−4)) + …

 : center of gap, “perturbative”Ept
N (ℏ)  : gap width, “1-instanton”ΔEN

related by P =NP!

New result in a very old problem!
[Mathieu, 1868]

Full structure of the trans-series in an open problem…
 Implications for  SUSY theory ,2d CFTs, conformal blocks…𝒩 = 2

[GB et al,  in progress]

Nℏ ≫ 1 :
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Path integral perspective

θ = 0 θ =
2π
3

− ϵ θ =
2π
3

+ ϵ θ = π

Ai(x) =
1
π ∫

∞

−∞
dte−S(t) =

1
π ∫𝒞

dte−S(t)

one thimble
one exponent

two thimbles
two exponents

Stokes phenomenon
𝒞 = 𝒥1

𝒞 = 𝒥1 + 𝒥2

𝒥1

𝒥2

saddle 
points

steepest descent contours= ``Lefschetz thimbles”𝒥1, 𝒥2 :

start here end here

S(t) = − i ( t3

3
+ xt)

gray regions: Re S>0 start here end here

θ = arg x
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Path integral perspective
𝒪(g) = ∑

n

cngn + ∑
n,k,l

c(k,l)
n (e−a/g)k(log g)l

perturbative non-perturbative

Z = ∫ 𝒟ϕe− 1
g S[ϕ] = ∑

i=saddles

e− 1
g S[ϕi] ∫𝒥i

𝒟ϕe− 1
g (S[ϕ] − S[ϕi])

fluctuations around saddles
= path integral over thimble 𝒥i

multi instanton actions

[Pham, Fedoryuk, Witten, Kontsevich,…]

``Exact semi-classics”
Analytical continuation of path integrals
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Beyond semi-classics

∫ℝ
ei( t3

3 + xt) = ∫𝒞
ei( t3

3 + xt)

highly oscillatory
integrand Im S= (piecewise) constant! 

Even when there is no small parameter in the theory, we can 
numerically compute the path integral by Monte-Carlo methods

“Sign problem”

Review article : ”Complex paths around the sign problem” 
[Alexandru, GB, Bedaque, Warrington, Rev.Mod.Phys. 94 (2022)]

Thimbles can be used to mitigate the phase oscillations that arise at 
finite density, out-of-equilibrium (real time), nonzero theta angle, etc…

[Di Renzo et al ’12; Fujii et al ’13, GB et al ‘15] 
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Lefschetz thimbles and the sign problem

𝒥1

𝒥2

𝒥3

ℂN

ImS = constant

ℝN

Thimbles: multi dimensional 
“steepest descent contours”

Instead of   Sample the fields on  where oscillations are milder ℝN ∑
i

ni𝒥i

Finding the relevant saddles and intersection numbers are challenging
Different values of parameters can lead to different thimble decompositions  

(Stokes) 

ni: intersection # between 
steepest ascent surface and ℝN
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Lefschetz thimbles and the sign problem

≡ ≡

Find complex path integration domains (not necessarily 
thimbles) where the phase oscillations are milder 

Many different ways find such domains : sign optimization, machine learning…

[Alexandru, GB, Bedaque et al ’15, … ]

Review article : ”Complex paths around the sign problem” 
[Alexandru, GB, Bedaque, Warrington, Rev.Mod.Phys. 94 (2022)]
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Example: Heavy-dense limit of QCD

⃗x

x0

P ⃗x

P ⃗y

[Fromm, Langelage, 
Lottini, Philipsen, ’11]

3d effective theory
of Polyakov loops

[GB, Marincel, 2310.xxxx]
[also Di Renzo et al via thimbles]

QCD with heavy quarks at high density

Inherits the sign problem from QCD  
Idea: find a complex domain with milder phase oscillations via 

optimization
[Mori et al, Alexandru et al, Bursa et al., Kashiwa et al. 

Detmold et al. ’20, ….]
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Heavy-dense QCD

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

ga step

<σ
>

bad sign problem

mild sign problem

sign optimization 

⟨σ⟩ =
∫ [dP]e−S[P]

∫ [dP]e−ReS[P]

A measure for phase
oscillations:

ℳλ ∈ SL(3)V

sign optimization 

SU(3)V

[GB, Marincel, 2310.xxxx]
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Heavy-dense QCD

SU(3)

ℳλ, 250 steps

ℳλ, 1000 steps

0 50 100 150 200
10-4

0.001

0.010

0.100

1

V

σ⟨σ⟩

bad sign 
problem

mild sign 
problem

sign 
optimization 

[GB, Marincel, 2310.xxxx]
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Heavy-dense QCD

0.996 0.998 1.000 1.002 1.004 1.006

0.005

0.010

0.050

0.100

0.500

1

σ
V=63

0.996 0.998 1.000 1.002 1.004 1.006
0.0

0.2

0.4

0.6

0.8

1.0

μ

<P
>

0.996 0.998 1.000 1.002 1.004 1.006
0

1

2

3

4

5

6

n

sign problem

equation of state n( )μ“nuclear saturation”
“Silver Blaze” [Cohen]

Polyakov loop

μ

μ

μ

red: SU(3)
blue: optimization, 500 steps
green: optimization, 1000 steps
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Real time path integrals

∫ℝ
ei( t3

3 + xt) = ∫𝒞
ei( t3

3 + xt)

Im S= (piecewise) constant! 
Pure phase

Minkowski path integral!

Can we simulate real-time path integrals via (generalized) thimbles?  

[related ideas (not lattice)
 Pham ‘83, Witten ‘10s]
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Real time path integrals

● Re[C] ● Im[C]

● ● ●
●

●
●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ●

● ● ●
●

●
●

●
●

●
●

●

● ● ● ● ● ● ● ● ● ● ●

● ● ●
●

●
●

●
●

●
●

●

● ● ● ● ● ● ● ● ● ● ●

exact

1st order perturbation

free theory

0.0 0.5 1.0 1.5 2.0

-4

-2

0

2

4

t

C
p=
0(
t)

interacting Bose gas: ℒ =
1
2

(∂ϕ)2 −
1
2

m2ϕ2 −
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Real time path integrals

[Alexandru, GB, Bedaque, Ridgway, Vartak, Warrington, PRL 117081602, PRD 95 114501]
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Real time path integrals -Hybrid Monte Carlo
Case Study : 0+1 d anharmonic oscillator ℒ =

1
2

·ϕ2 −
1
2

m2ϕ2 −
λ
4!

ϕ4

in progress
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Renormalons 
In QFT, perturbation theory has another source of divergence  

gn(μ)∫
μ

0
dkkp−1 (β0 log(k /μ))n ∝ gn(μ)

n!
(−p/β0)n

, p = 2,4,…

β0 =
1

8π2 (−
11
3

Nc +
2
3

Nf)QCD: SI = 8π2

s

…

…
instanton  singularities

sr =
p

|β0 |
“infrared renormalons"

sr = −
p

|β0 |

“ultraviolet renormalons"

…

β0 < 0
β0 > 0

2SI 4SI

[Parisi, ’t Hooft, … late ‘70s]
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Renormalons 
For asymptotically free theories IR renormalons constitutes a puzzle

Semi-classical configurations that cancel the ambiguity?? 
not known in QCD

[’t Hooft, “Can we make sense out of QCD?”, ’77]

s

…

instanton  singularities

renormalon singularities
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Renormalons: recent developments
2d and 4d theories on ,  (CP(N), principal chiral model, QCDadj,,… )ℝ × S1 ℝ3 × S1

twisted boundary conditions on  (preserve mixed ’t Hooft anomaly if exists)

small : weakly coupled, but still confining semi-classically  ``adiabatic continuity”
S1

S1

[Dunne, Ünsal, Cherman, Dorigoni, Argyres, Mismui, Sakai ,Tanizaki,….]

fractional instanton-like objects associated with confinement 

Some open questions:

e.g S =
2
Nc

SI (ℝ3 × S1) srenormalon =
12

11Nc
SI (ℝ4)vs.

ϕ4
M̄S large order growth is dominated by instantons, not renormalons

 [Dunne, Meying, ’23] 

How does adiabatic continuity work in Borel plane?
New results on 2d theories via integrability, interpretation not obvious  [Marino’ 22]
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Overview
Going back to the work of Stokes, making sense out of asymptotic 

series played a crucial role in many areas in physics and mathematics. 

Quantum mechanics Delabaere, Dillinger, Pham, Voros, Bogomolnyi, Zinn-Justin, Kawai, Takei,….
``Hyperasymptotics” 70s-90s Dingle, Berry, Howls

Some earlier parallel developments

Still ongoing program, many open problems waiting to be tackled….

More recently
Strings, integrable models, Chern Simons (’07 - …) Aniceto, Marino, Schiappa, Weiss, Vonk, Gukov,…
QFT, QCD in semi-classical domain  (’10 - …) Dunne, Unsal, Argyres, GB, Cherman, Dorigoni,  …  
Path integral, Lefschetz thimbles  (’10 - ..) Witten, Kontsevich, …
Beyond semi-classics, Lefschetz thimbles, sign problem  (’12 - onwards) Di Renzo et al.,  Alexandru,        

GB, Bedaque, Warrington, ….
..

Resurgence: exact ``semi-classical” decomposition of the original 
function in terms of the basic elements  [Ecalle, 80s]gn, e−1/g, log g
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Other stuff…
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Euler-Heisenberg
``worldline representation”: Borel-Laplace integral

a2 − b2 = ⃗E 2 − ⃗B 2, ab = ⃗E ⋅ ⃗B
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Complex instantons Mathieu

[GB, Dunne, ‘15]

ΔEN ≈
1
π

∂E
∂N

e− 1
2ℏ Im ∮γ2

P(x;ℏ)dx ≈
N ℏ2

π ( e
2N2 ℏ2 )

N

x

γ1

γ2

−π π

To leading order

ImSγ2
(E) = 2π(1 − E) 2F1 ( 1

2
,

1
2

,1; 1 − E) ≈ − 2 2E (log(16E) − 2)

E ≈
ℏ2N2

2

Gap width:

non perturbative cycle
 perturbative cycle
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Complex instantons in QFT
Vacuum pair production with monochromatic electric field 

E(t) = ℰ cos(Ωt)

Mathieu problem with ℏ ⇔
ω2

ℰ
~frequency N ⇔

me

Ω
~number of photons

Pair production rate:

e− m2π
ℰ f( mΩ

ℰ ) ∼

e− m2π
ℰ , γ ≪ 1

( ℰ
4mΩ )

4m
Ω

, γ ≫ 1

~”Keldysh adiabaticity parameter”ℏN ↔
mΩ
ℰ

:= γ

• Static limit 
• Schwinger pair production
• Tunnelling from Dirac sea
• ~band width

• Multi-photon limit 
• Brézin-Itzykson 
• Tunnelling from Dirac sea
• ~gap width

[GB, Dunne, ‘15]
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Simple P=NP relation  Ramanujan’s elliptic functions in alternative bases⇔

x ↔ E

[Berndt, Ramanujan’s Notebooks Vol. II]

Mathieu

Triple well

Double well

Cubic 

[GB, Dunne, Ünsal]

P=NP and number theory
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x ↔ E

[Berndt, Ramanujan’s Notebooks Vol. II]

Mathieu

Triple well

Double well

Cubic 

[GB, Dunne, Ünsal]

P=NP and number theory
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Simple P=NP relation  Ramanujan’s elliptic functions in alternative bases⇔

x ↔ E

[Berndt, Ramanujan’s Notebooks Vol. II]

Mathieu

Triple well

Double well

Cubic 

[GB, Dunne, Ünsal]−
ℏ2

2m
ψ′￼′￼+ V(x)ψ = Eψ

P=NP and number theory


