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Perturbation 1heory

Perturbation theory is a ubiquitous (often the only)
analytical tool we have in quantum field theory

O(g) ~ cy+ 18 + cr8° + ...

Most of the time the calculation of coefficients are
challenging, they have to be regularized, renormalized etc...

But after all the dust settles we still have to deal with
another problem:

typically ¢, ~n!

Perturbative series has zero radius of convergence [Dyson, ‘52]
We have to give meaning to the sum above
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Perturbation 1heory

O(g) ~ Z G

n

log(c,8™ |,

Partial sums eventually diverge!



Perturbation 1heory

“Divergent series are the invention of the devil, and it is shameful to base on them any
demonstration whatsoever...”

Niels Abel, 1828



Perturbation 1heory

“Divergent series are the invention of the devil, and it is shameful to base on them any
demonstration whatsoever... Yet for the most part, the results are valid, it is true, but it is a
curious thing. I am looking for the reason, a most interesting problem”

Niels Abel, 1828



Perturbation 1heory

(1802-1829)

“Divergent series are the invention of the devil, and it is shameful to base on them any
demonstration whatsoever... Yet for the most part, the results are valid, it is true, but it is a
curious thing. I am looking for the reason, a most interesting problem”

Niels Abel, 1828



Divergent -Asymptotic Series

O(g) ~ Z G

n

log(c,g™) |.

- n
N~1/g

N—1
N!
"optimal truncation": 0(g) ~ Z c,g"+ Ry(g) error:Ry(g)~— ~e
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Divergent -Asymptotic Series

O(g) ~ Z G

n

log(c,g™ |.

i. n
N~1/g

N-1 N
"optimal truncation": 0(g) ~ 2 c,g" + Ry(g) error:Ry(g) ~— ~ s

N
n=0 8 l

Non-perturbative physics?@



Quartc Oscillator
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Divergent -Asymptotic Series

The way that perturbation series diverges contains non-
perturbative information

One can systematically go beyond optimal truncation via
the theory of resurgence

[t relates perturbative and non-perturbative physics

Let’s first introduce the basic tools
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Borel Resummation

We can convert the problem of summing a divergent series
into a problem of complex analysis of analytic functions

. &
O(g) ~ Z c,g" : divergent o O(s) = Z msn . convergent
n

Transform

n
S

g NNVVVWN\S

analytic at origin ©

BN essential singularity , et
singularities in complex plane

at origin (&

| A
Borel resummation: BO(g) = —J dse™'80(s)
& Jo
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Quartc Oscillator

ol 3 20 333, 30885 V)
g = VS = e s

[ = A
! —s/
%’Eg,,(g) = —J dse gEg,,(s)

e

can be resummed by conventional methods (Pade etc..)
no singularities along s>0

~6x 107

Optimal Truncation (g=0.1) Borel Resummation (g=0.1)
3 S EexaCt e Eoptimal = 0018 3 AR Eexact - EBorel—Pade
Eexact Eexact
Eexact = EBorel—Pade

~2x 1078

Adding more terms makes it worse... 10 terms: Z

exact
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Stark Lffect

Ground state energy of hydrogen atom in constant electric field E

D 4
G 1 E B
~ e o1 = oA e
B, z 3
4
e'm Sl
em o
E, = £ =27.2eV = che
ey z = = 51V/A
N e (2n)!
c, ~
0 —0.5 (2 / 3)”
2 —2.25
4 ~55.546875
6 ~4907.771 484 375 :
8 —794 236.926 452 636718 Factorial growth
R, (mm) 10 —194 531 960,466 499 329 ,
12 —66 263 036 523.689 170 9 Non-alternating
A SES I dolna el 14 29924 943 988 411.939 5 /
PRL 110, 213001 (2013)] 16 -17 346970495631 198.5

[Silverstone, 78]
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Stark Lffect

A & E, :
HOEDY . )'s2" DllcE
n=0 - _-'W_

\

1 (0 0)
‘%Egr(E) S J dse —S%C/EEgr(S) singularity
EJ, along the integration contour! G@?
. 2 o by
no need to aIHE: Im Egr 2 B Tunnelzng ionization rate!

Non-perturbative physics

Divergence of / \ Singularities in

perturbation series ®———————————9  Borel plane
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QF 1 example: Luler-Heisenberg

Effective action for QED in a constant electromagnetic background

£ = +

] —
forB=0 % =—E*+

Borel plane

e*h? —

%) 36072com?

JU

closest singularity

eOh?

63072c12m?
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[Euler, Heisenberg ‘36]
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Radius of convergence
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Luler-Heisenberg

Effective action for QED in a constant electromagnetic background

[Euler, Heisenberg ‘36]
f - + -+ == 5O

1 — €4h2 — €6h4 — & E - m2C3
orB=0 L =—E°’+ E* + E°+..=) ¢ | — o e
f 2 36072com? 63072c12m? % "\ &. e
Borel plane S Schwinger pair production rate
ﬂ: &

T loages o gl e

closest singularity

208
s

&, = = 1.32 x 10¥V/m

C

he
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Double well

1 1 Vix)
oy 2

H—2p +2x(1 \/§x)
E (0 1 98 50 0B ‘s

:__ R S T P N T D e o o x
Il faty S it

S
158

1

No instability: E, must be real

singularit
i Choice of the contour is ambiguous

along the integration contour! (@
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Double Well: Instantons to the Rescue

Non-perturbative contributions to the path integral

x(tg)

1 V(x)
Instanton action: S, = -

anti

=i imstanton

Double tunneling ~ e s

instanton-anti-instanton”

Path integral sums over all separations (quasi-zero mode)
Quasi-zero mode integral is ill defined for ¢>0

Evaluate at g<0, analytically continue to g>0 [Bogomolnyi, Zinn-Justin ‘80s]
287

The result is 2-fold ambiguous: ImE;; ~ F e =
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Double Well: Instantons to the Rescue

ImE,,,, +ImE; =0 upto O(e™ %)

s A

Borel resummation of Non-perturbative
perturbation series instanton gas
(2-fold ambigious) (2-fold ambigious)

Resurgence:
Perturbative + non-perturbative fluctuations can be
meaningtully resummed
There are gquantitative relations between
perturbative and non-perturbative sectors
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Supernumerary rainbows

ImE

e, FIME;; =0 up to O(e=*1'8)

Why does this happen?

[image: J. Bahrdt wiktionary.org]
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http://wiktionary.org

Supernumerary rainbows

= Cubic
— | wavefront
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http://ams.org

Airy equation

Airy : convergent expansion around x=0 Stokes: asymptotic expansion x — oo
[On the intensity of light in the [On the numerical calculation of a class of
neighbourhood of a caustic, 1838] definite integrals and infinite series, 1850]
|20 terms .
1 term
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Stokes puzzle

T

AN

I (= i
Ai(x)z—[ de< +t

/\F

Ai(x)

N

two exponents

X

e
i

one exponent

Stokes was puzzled by the fact that the same function is
represented by two exponentials on one side and one
exponential on the other side
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Stokes puzzle

When the cat’s away the mice may play. You are the cat
and I am the poor little mouse. I have been doing what I guess
you won’t let me do when we are married, sitting up till 3 o’clock
in the morning fighting hard against a mathematical difficulty.
Some years ago I attacked an integral of Airy’s, and after a severe
trial reduced 1t to a readily calculable form. But there was one
difficulty about i1t which, though I tried till I almost made myself
ill, T could not get over,and at last I had to give 1t up and profess
myself unable to master it*. I took 1t up again a few days ago,
and after a two or three days’ fight, the last of which I sat up till
3, I at last mastered it. I don’t say you won’t let me work at such
things, but you will keep me to more regular hours. A little out
of the way now and then does not signify, but there should not be
too much of 1t. It 1s not the mere sitting up but the hard thinking
combined with it.......

PEMBROKE COLLEGE, CAMBRIDGE,

March 28, 1857, VL

Stokes’ letter to his fiancee

On the biscontinuity of Arbitrary Constants which appear in Divergent
Developments. By G. G. Sroxes, M.A., D.CL., Sec. R.S., Fellow of Pembroke
College, and Lucasian Professor of Mathematics in the University of Cam-
bridge.

[Read May 11, 1857.]

IN a paper “On the Numerical Calculation of a class of Definite Integrals and Infinite

Series,” printed in the ninth volume of the 7'ransactions of this Society, I succeeded in

developing the integral fmcosg(w’ ~mw)dw in a form which admits of extremely easy
o ~ .

24 numerical calculation when m is large, whether positive or negative, or even moderately large.



The ““coupling constant” in Stokes” asymptotic expansion is x~

Stokes phenomenon

372

The direction of Borel integration is determined by 6 = argx

Stokes line: The new exponent is born when it is crossed
(exponentially small compared to the other one)

/ - 2 exponents b=z
“‘ e — 27[ / 3 + € 5
2 exponents ““1 lagal]
f\ cross Stokes line

¢ = Dalls =

=

Both exponents have
equal magnitude

1 exponent

As 0 passes through the critical value, the inferior term enters as
1t were 1nto a muist, 18 hidden for a little from view, and comes out
with its coefficient changed. The range during which the inferior
term remains in a mist decreases indefinitely as the modulus »

increases 1ndefinitely. [On the discontinuity of arbitrary constants that

appear as multipliers of semi-convergent series, 1902]
25



Resurgence

ImE

pert. + ImEH‘ + ImEﬁH‘ Sp — O

These ambiguities occur because ¢g>0 is a Stokes line!

For an un-ambiguous, well defined expansion we have to
incorporate the exponentially small terms from the start

0(g) = ) c,8"+ ) ce " (logg)  “Trans-series”

n n,k,l /
perturbative non-perturbative [J. Ecalle, “80s]

Resurgence is a framework which consistently keeps
track of all the Stokes phenomena to all orders

quantifies the relations between ¢, and c,flk’l)

26



Resurgence

Vie)

1 9 39 5013

= e
(g)zgzg 2g 8g

Perturbative expansion

Do e )70 | 1
vt === = == = SR
< 6F 8 g ) >

Fluctuations around instanton-anti-instanton

T E L " 53 12777
mE~e %1 —-——g———
= e
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Resurgence

“...resurgent functions display at each of their singular points a behaviour closely related to
their behaviour at the origin. Loosely speaking, these functions resurrect, or surge up - in a
slightly different quise, as it were - at their singularities”

Ecalle, “80s

28



Periodic potential (Mathiew)

Perturbative expansion (2N < 1): N: level number

harmonic oscillator + corrections

1

E\(h) 1+8|N+ hz_N+12+1_ hS_N+13+3 N+1_
2 o G D 4 162 D 4 2

29



Non-perturbative sector

E\(h) has a resurgent trans-series expansion for AN < 1
Vi(x)

VAN

Large order growth (ground state)

n! 5 8 |3 |
¢, (0) ~ ] —— - —— - e
16" 2 o =)

Fluctuations around instanton - anti-instanton

3 5ty 1B L
ImEO(h)Nﬂ'ﬁXp [—%] 1—5<E> —?<1—6> gy

30



Non-perturbative sector

The physical spectrum has

exponentially small bands tor
Nh < 1

Perturbative expansion: center of the band
1 1N 1] 7 1\’ 3 I
— | (N+=) +=| -—— |[(N+=) +=(N+=])]| - ...
16 2 — G 2 - 2

Non-perturbative expansion: width of the band

1
N+—
2

t
EP(R) ~ — 1+ h

7 R 7o) \ AL s1[  # [ L Y o :
AE]‘Q,andN\/i exp |[-—|31—-=—[3(N+=| +4(N+= ) +=| +O®*
= .\ 7 32 7 2

Sl




Non-perturbative sector

Perturbative expansion: center of the band K="N=1/2

t g | fie 3 fi (ESke gk O
EP(R)y~—-1+hKk—— | K°+— | —— | K°+—K | - + s
i 16 4 162 4 liGEENE 4 2

n ([ 33K° " 205K3 405K
—

+—
4 8 64

Non-perturbative expansion: width of the band

o OEf 8 h ey L e eSSBS
A ~ —mexp | —— | L= | 3KP 4+ | =~ | 5K+ —— | = + +

h 162 - 16 - 8 64
density of states - -

the coefficients look suspiciously similar...@
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Perturbative expansion Non-perturbative expansion
- h [ 3 OEY
(i) ~K-—K*+— )| —-—— | K’+=K ) — ... BancE?s Ll
v (7) 16( +4> 162< 37 ) LB e exp[ A(h)]

[Zinn-Justin, Jentschura, ‘04]

0 EI])\ft h %) AN [Hoe, D'etat et al. 81,
N Alvarez, Casares '00,
oON 16 Dunne, Unsal, ’14,...]
Low order terms in Low order terms in
[ ° ° °
perturbative series fluctuations around instantons

All non-perturbative data is encoded in perturbative expansion!

5%



Geometric origin of P=/VP

Vix) WKB actions:
e 2
76 (E—V)5/2

P(E,h) ~\/2AE-V) —

"""""""  GEb G i g
71 ' V2
perturbative non-perturbative (tunneling)
S\(E; h) =<Jg P(E, n) S,(E; h) =<Jg P(E, h)

71 i

< 5 (& 1y — SIED) > 0S,(E; h)

oh 9]

: <SZ(E; et h)> 0S,(E;h) _ .

S
OF i

related to SUSY gauge theories, topological string theory,....

|GB, Dunne "15] [Codesido,Marino, Schiappa "18] holomorphic anomaly,
34 [Gorsky, Milkehin, "14] Whitham hierarchy



Connecting weak and strong coupling

P=NP relation holds everywhere in the spectrum!

En(h)
Win =10 gl
“strong coupling” + W/, )/ /4 £ e > gap
1.5 mlrrr s /S S L A
1 O|— sttt
ffffff odd
Ssly d e e » band
—————————— even
Nh <1 |
Vs ' V44 ) l ; : : h
weak coupling 0.2 0.4 0.6 0.8



Connecting weak and strong coupling

P=NP relation holds everywhere in the spectrum!

m
',,l \\ \) \\l - \ \

En

Nn>1 5,

“strong coupling”

19

1.0} il
\\\\\\’\'\'"
0.5} 7
Nn < 1
“weak coupling” 0.2 0.4 0.6 08"



[ ransmutation of trans-series

Nh > 1 : narrow gaps

N

7’

’l
(4
,/
4
4
e

EZI\’f (n) : center of gap, “perturbative” AE)y, : gap width, “1-instanton”

zZo00m 1n...

72 SN2 47 IS !
7 S —4
Bk uE |\ 8(N2— 1) < ) S12(N2 - 13(N? - 4) <h> ! > - EALA N Sl

vwted by P =NP!

New result in a very old problem!
[Mathieu, 1868]

[GB et al, in progress]

Full structure of the trans-series in an open problem...

Implications for ,#° = 2 SUSY theory ,2d CFTs, conformal blocks...
S



Path integral perspective

o0 . £3
Ai(x) = J die=50 = L [ dte=S® S (? ”f)
—00 G

T T
0 = argx

J 1,7, steepest descent contours= ""Lefschetz thimbles”

gray regions: Re 5>0

start here end here start here end here
f 1 \\‘\/
i saddle ¢
E\ points ‘
72 :
7 2
O =0 Qz?ﬂ_e . ez?ﬂ—l—é’ 0=nr
Stokes phenomenon € =

one exponent - two exponents



Path integral perspective

0(3) = ), c,g"+ D, e ®)(log g)

n n,k,l

perturbative non-perturbative

multi instanton actions

=

7 = | Dpe 51 Z e~ | Ghe—w (5101 = SI1)

. i=saddles sl \

fluctuations around saddles
= path integral over thimble ¢,

“Exact semi-classics”

Analytical continuation of path integrals

39 [Pham, Fedoryuk, Witten, Kontsevich,...]



Beyond semi-classics

Even when there is no small parameter in the theory, we can
numerically compute the path integral by Monte-Carlo methods

| i<£ +xt> | i(ﬁ +xt>
\/ : : o € 3
JR u%

hig h.ly oscillatory Im S= (piecewise) constant!
integrand

“Sign problem”

Thimbles can be used to mitigate the phase oscillations that arise at
finite density, out-of-equilibrium (real time), nonzero theta angle, etc...

[Di Renzo et al 12; Fujii et al '13, GB et al “15]

Review article : ”“Complex paths around the sign problem”

[Alexandru, GB, Bedaque, Warrington, Rev.Mod.Phys. 94 (2022)]
40



Lefschetz thimbles and the sign problem

$ '
2

ImS = constant j

Thimbles: multi dimensional
“steepest descent contours”

®
7

n;: intersection # between
N
steepest ascent surface and R

1

A

Instead of R" Sample the fields on 2 n. ¥ . where oscillations are milder

l

Finding the relevant saddles and intersection numbers are challenging
Different values of parameters can lead to different thimble decompositions
(Stokes)

41



Lefschetz thimbles and the sign problem

Find complex path integration domains (not necessarily

thimbles) where the phase oscillations are milder
[Alexandru, GB, Bedaque et al 15, ... ]

Many different ways find such domains : sign optimization, machine learning... Q

Review article : “Complex paths around the sign problem”

[Alexandru, GB, Bedaque, Warrington, Rev.Mod.Phys. 94 (2022)]
42




Lxample: Heavy-dense limit of QCD

QCD with heavy quarks at high density

o—0 9@ ®
, o —o o ®
3d effective theory
of Polyakov loops R ®
[Fromm, Langelage,
Lottini, Philipsen, "11] o—0—90 @
O—90--—0 @
X0
*—0—0© ® P-
s P. w v Y
I > X X

Inherits the sign problem from QCD
Idea: find a complex domain with milder phase oscillations via
optimization

[GB, Marincel, 2310.xxxx] [Mori et al, Alexandru et al, Bursa et al., Kashiwa et al.

[also Di Renzo et al via thimbles] . Detmold et al. 20, ....]



Heavy-dense QCD

M, € SL(3)V

sign optimization

A measure for phase

06 | -06
oscillations: | w 4—— mild sign problem
| [dPle>t) |
<O-> e J[dP]e—ReS[P] 10.2
bad Sign prOblem (I) : ‘ ‘ 2(I)0 : ‘ : 4(I)0 ‘ : ‘ 6(I)0 ‘ : : 8(I)0 ‘ : : 10I0(-)

[GB, Marincel, 2310.xxxx]



Heavy-dense QCD

‘I;I Sl e e | I , -
: o : e 1 mild sign
0.100¢ = & problem
L E §E
(o) 0.010; b sign
i : optimization
L > SU(3) It
O'OO1§<> M,, 250 steps { bad sign
EE> M., 1000 steps | problem
0T s 10 150 200

V

45 |GB, Marincel, 2310.xxxx]



Heavy-dense QCD

Entclcassatiinatione s T e.”i’f‘atw” fﬁ;mte n(y )
6 s T+ 4 ]
“Silver Blaze” [Cohen] ~~ i lf ii%
sign problem 5\ B il
_ ! Fytl
1F : : : 4r \ ::"“"__“__
| o R
0.500¢ Ro 3 ke
[ © 8 8 &
QEZ@@ i 2 ‘}
o q>®[[) @0 @ED I @éﬁ 1 ]
0.1005‘ <I><I><I> U>U>Q>U>H><I> P00 <I><I> o ; 1_ 5- I 1 = _
e ¢ : Ll EE e 5
I [|> 1> 4> 4> 4> 4> [‘> [|> | 0.996 0.998 1.000 1.002 1.004 1.006
U
0010, f o f -; - ool
0.005} g LI® Bl e ] 1.0f : l 1T -
_V.=6.3 | e e e 0.8} P__D@%” % |
0.996 0.998  1.00¢/ 1.002 1.004  1.006 = #ﬁ i IZ;;—-fﬁ:
e e HTTs| 1
| i it
0.4F P | PR k=
red: SU(3) Tl vb| [ F] B
blue: optir.niz.atic?n, 500 steps ol {ﬁﬁ - b ?ﬁﬁ* _.
green: optimization, 1000 steps i # of| g e
e 1515 B 5 o 15 2 1B M B S B B -

0.996 0.998 1.000 1.002 1.004 1.006
46 H

<P>



Real time path integrals

k e b S
\/ Z<T+Xt> l<?+Xt>
€ — €

g JR J&

\

Im S= (piecewise) constant!

Pure phase
Minkowski path integral!

Can we simulate real-time path integrals via (generalized) thimbles?

[related ideas (not lattice)
Pham ‘83, Witten “10s]

47



o(t)

Cp

Real time path integrals

: . 1 1 A
interacting Bose gas: < = E(qu)z - 5m2¢2 - Zgb“

weak coupling 1=0.1

Re[C] o IM[C] Re[C] « Im[C]

it ; 4t

2 A | =2

Oﬁii;exac.t L S oot
i z '/' ' 4 } ¢ Sl

—Z2 15t order perturbation 2 =7

—4; —4t

o0 o s L W9 08 b 95 @ a0

t t

C,(1) =, p)p(0.p)) 5

[Alexandru, GB, Bedaque, Ridgway, Vartak, Warrington, PRL 117081602, PRD 95 114501]
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Real time path integrals

: : 1 1 A
interacting Bose gas: < = E(qu)z — 5m2¢2 - Zgb“
strong coupling A=1
Re[C] Im[C] Re[C] Im[C]
4 03 :
. exact 02 U ! :
et U £ 01t . 5
: = s : |
O'. s [ ] ) ® o ' . [ ] 5 OO_. ® ]
: ] Q& ~0.1¢ 8
— 15t order perturbation : o :
e ~ : / —02‘ °
—4' - 2 . —03' s ]
0.0 el o e 0.0 0.5 1.0 1.5
t t

C,(1) =&, p)P(0.p)) 5

[Alexandru, GB, Bedaque, Ridgway, Vartak, Warrington, PRL 117081602, PRD 95 114501]

49



Real time path integrals -Hybrid Monte Carlo

s 1 A
Case Study : 0+1 d anharmonic oscillator & =—¢* = —m*¢* = 24"

W= oul = )]

| .o. R.e<.Tlx(.t)x.(0.)>. Iollr.n<.T ?((tl)x$0).> ....... e ORe<T x(t)x(0)>
SR o m ot
0.5} ! i
A % 0'025“1 Il Il
0.0} _ 0.00}* | | e
_ w _0.02} lI{ 11 lHH[
05| _ [ |
| : ~0.04} -:
e B e S BEEEol e
t t

11 Progress
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Renormalon.s

In QFT, perturbation theory has another source of divergence

[Parisi, "t Hooft, ... late “70s]
p n!

gﬂ(ﬂ)J dkkP~" (o log(k/u))" o g"(u) , p=24,...
0 ( ) (—=p/Ppy)"
“ultraviolet renormalons” “infrared renormalons” s, = 14 -
< O ﬂO
e \ Po
ﬂO i By /

—h—h—k—h—k R
s 45

instanton singularities

Eil ]
QCD: py= P —?Nc 1 ng S = 8x

Dl



Renormalons

For asymptotically free theories IR renormalons constitutes a puzzle

Semi-classical configurations that cancel the ambiguity??
not known in QCD

renormalon singularities 5

.

instanton singularities

L B ~—

or gluon- channels. It is likely that these singularities are re-

lated to the quark confinement mechanism.

|t Hooft, “Can we make sense out of QCD?”, "77]

972



Renormalons: recent developments

2d and 4d theories on R X S!, R? x S! (CP(N), principal chiral model, QCD.gj, ... )

twisted boundary conditions on § . (preserve mixed 't Hooft anomaly if exists)
small S': weakly coupled, but still confining semi-classically “‘adiabatic continuity”

[Dunne, Unsal, Cherman, Dorigoni, Argyres, Mismui, Sakai ,Tanizaki,....]

fractional instanton-like objects associated with confinement

% 12

- - 4
=g 5 = VCSI (R3 X Sl) VS. Srenormalon = 11N, S (R )

14\1715 large order growth is dominated by instantons, not renormalons

[Dunne, Meying, "23]
Some open questions:

How does adiabatic continuity work in Borel plane?
New results on 2d theories via integrability, interpretation not obvious [Marino’ 22]

5%



Overview

Going back to the work of Stokes, making sense out of asymptotic
series played a crucial role in many areas in physics and mathematics.

Resurgence: exact ~“semi-classical” decomposition of the original
function in terms of the basic elements g", e ~"/8, log g [Ecalle, 80s]

Some earlier parallel developments

Quantum mechanics Delabaere, Dillinger, Pham, Voros, Bogomolnyi, Zinn-Justin, Kawai, Takei,....
“Hyperasymptotics” 70s-90s Dingle, Berry, Howls

More recently
Strings, integrable models, Chern Simons (07 - ...) Aniceto, Marino, Schiappa, Weiss, Vonk, Gukoy,...
QFT, QCD in semi-classical domain ('10 - ...) Dunne, Unsal, Argyres, GB, Cherman, Dorigoni, ...
Path integral, Lefschetz thimbles ('10 - ..) Witten, Kontsevich, ...

Beyond semi-classics, Lefschetz thimbles, sign problem ("12 - onwards) Di Renzo et al., Alexandru,
GB, Bedaque, Warrington, ...

Still ongoing program, many open problems waiting to be tackled....
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Other stuff...



Luler-Heisenberg

“worldline representation”: Borel-Laplace integral

e

3
L= —;-(@2—239)+4n2m ¢? (ﬁhf) je—vd?{ anctgan-byCtgbn + 1

n 9
OOO +%(b9_a2)}
_ 1 e 2 9y 2 'E:j[ .49
= 5(@ — B +4x mc(h‘) g1 B

0
- o Cos (b 4 1a)n 4 Cos (b —1a)
{_ - nCos(b——fia)n—Cos(b—-ia)n

+1+ % (P —a). (@)

2

ac—bhe—=F B uh=TF
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Complex instantons Mathieu

ks To leading order

v, non perturbative cycle . h22N 2

perturbative cycle Vi

ImS, (E) = y/2x(1 — E)oF, (%%1 i — E> ~ — 24/2E (log(16E) — 2)

2 N
. ON i TN 72

[GB, Dunne, “15]
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Complex instantons in QF 1

Vacuum pair production with monochromatic electric field

E(t) = & cos(L21)

602

m
Mathieu problem with 7 < — ~frequency N & Ee ~number of photons

mg
AN < — ~"Keldysh adiabaticity parameter”

e Static limit
) e Schwinger pair production
SRR = e . Tunnelling from Dirac sea
e ~band width

Pair production rate:

—oz (=2 )

n

€

4m
z W2 e Multi-photon limit
—— 5 = P
( 4mQ2 > / * Brézin-Itzykson
e Tunnelling from Dirac sea
e ~gap width
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P=NP and number theory

Simple P=NP relation < Ramanujan’s elliptic functions in alternative bases

Example 1 [GB, Dunne, Unsal]
Mathieu i34 51— x) 121
_ b 2 ) 1 -
CXP( TRGL LY ) 16( T 64x i )
Example 2
Triple well 2 RGH LIy x5 )
T\ A LRGELy )Tz Tt
il Example 3
Double well ( Fi(z, 2; 11— )) X ( 5
eXp{ —/ 2 L+2x+
VI ATy ) 6
Example 4
Cubic Fit, 21,1 —x) 13
exp| —2n 2102 > 1+
P( Fi1(3, 8 1 x) 432 M 18x+

[Berndt, Ramanujan’s Notebooks Vol. II]
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P=NP and number theory

Simple P=NP relation < Ramanujan’s elliptic functions in alternative bases

Example 1 [GB, Dunne, Unsal]
Mathieu JFid L1 —x) 1 21
exp(_” (5 ) ) 16(1 et )
Example 2
Triple well 2 RGELI-0Y_ x5 )
2 eXp( /3 RG gLy )\ T
Dt Example 3
Double well ( JFi@h L1—x\  x 5
exXpl{ — /27 1
PV Gt ) el et
Example 4
Cubic F,5 3511 — x) 13
ex _27_[2 1\6> 6 +» X 1 42
p( FG L ) el Tt

[Berndt, Ramanujan’s Notebooks Vol. II]

We do not know Ramanujan’s intention in giving Examples 1-4.
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P=NP and number theory

Simp] aujan’s elliptic functions in alternative bases

——y ' + V(y = Ey

IGB,_Dunne, Unsal]
Mathieu 2m

Example 2
Triple well exp(__ 2 B 5

E
4o Example 3

Double well

2F1(~j;, %5
exp{ — \/En -

2F1 (Zs 4

Example 4

Cubic F (L 5.
ap(2ailh

ks Vol. 1I]
We do not know Ramanujan’s
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