

Focused effort to increase data taking efficiency

Start of physics data taking now 4-5 minutes after "physics declared", down from 11-12 minutes.

Faster recovery decision tree from high trigger rate issues.

Dissection of individual stores.

After testing and analysis of backgrounds, sPHENIX is now keeping silicon voltages (MVTX, INTT) through polarization measurements.

MVTX still examining keeping voltage on during "STAR-intocollision" event.

SEB hangs; new diagnostic tools.

MVTX DMA drops at highest rates.

7/23/24

sPHENIX 2024

Excellent efficiency this past week. Average livetime during data taking 98%. Reminder, goal for this run in BUP was 60%. Only taking data at high lumi for 4 weeks.

7/23/24

sPHENIX 2024

Secret weapon...

0 mrad

+1.5 mrad

ZDCNS rate down by 1/5 and then need to account for double interactions and acceptance change.

TPC Status

Heavy lift by many people appears heading towards success.

(Kin) An "all negative" USI (Unresolved Safety Issue) — concerning our usage of isobutane in TPC — has been signed by C-AD this morning, after the AESRC (Accel. & Expt. Safety Review Com.) review on July 17, 2024. <u>This is good news.</u>

- A walkthrough has been scheduled on Tuesday, July 23, 2024, at 11 am.
- We also need isobutane delivery, finish testing and procedure revision etc.

				Table 1: Scope	rice Dequiring leebutene	Velve legistion	1	
	C-AD and IP Unreviewed Safety Issue (USI) Evaluation Form		Location	Scenario	Engineered	Administrative Control/Response	-	
Flowing isobutane in IPC of	(U-PHOT NI 1. 10.1.0)				Control/Response			
8	with a total safety factor over 30. In the event the supplied airflow is compromised,		R8 (sPHENIX Detector Hall)	Sore Denimidifiers ΣN > 100 cfm and ΣS > 100 cfm		No Change		
PHENIX	isobutane supply will be closed.	IF	R8 (sPHENIX Detector Hall)	Ceiling VESDA HSSD Smoke		No Change		
51 111/1/1/1	edge science and minimizing gas loss is a priority. The above risk analysis concludes			Detected				
	that the introduction of isobutane within the TPC is an activity of extremely low risk. The semi-guantitative hazard analysis shows the controls implemented and maintained		R8 (sPHENIX Detector Hall)	Bore VESDA HSSD Smoke	Turn off Isobutane	No Change		
	through 10 CFR 851 safely mitigate the hazard to acceptable levels.	IF	R8 (sPHENIX Detector Hall)	Bore isobutane detected	alarm sPHENIX Control	Alarm MCR; Resume after handheid flammable gas survey		
	III. USI Evaluation Criteria:	G	Sas Mixing House	GMH Vent Fan Fail	Room	No Change		
• Agreement to implement the July 12 version	1. Does the planned activity or discovered condition introduce a new or previously	G	Sas Mixing House	Sobutane Shed Vent Fan Fail		No Change Alarm MCR: Resume after handheid flammable das survey		
	current SAD and approved ASE?	G	Gas Mixing House	>6% Isobutane Mixture		No Change		
of the USI.	□Yes ⊠No	G	Gas Mixing House	Emergency Stop Button		No Change		
	Justification: (use attachment if necessary)							
• There will be an AESRC review tomorrow	re will be an AESRC review tomorrow The parent activity does not introduce a new or previously unreviewed accelerator						utane	
and after that the USI would be ready for	specific hazard as isobutane is being used in the TPOT. The introduction of an additional isobutane supply is safely mitigated by extending the existing 10 CFR 851	we ar	e implemen	ting the above et		ary for 51 1121 (172 to 110 w 150)	Julune	
and after that, the USI would be ready for	controls.	from the Gas Mixing House to the IR.						
signatures	 Does the planned activity or discovered condition introduce a new or previously unreviewed non-accelerator specific bazard that is not adequately addressed by 			e				
Signatures.	the current SAD and approved ASE and increases the risk level as per the SAD risk table which would contine at least one pow condition control?	• The firmware and software implementation/changes are done by an outside						
• We are also undating procedures alarm				11 DNI 0				
we are also updating procedures, alarm		com	company as well as a BNL software engineer.					
instructions and necessary training.	Justification: (use attachment if necessary)							
and a second and a second provide a second provide a second second second second second second second second se	The planned activity does not introduce a new or previously unreviewed non-accelerator specific hazard that increases the risk level as per the SAD risk table or require at least	• Fong in the inclustone shed and the Cog Mining House are being restored						
Walkthrough will be scheduled in	one new credited control. The introduction of isobutane is safely mitigated with controls implemented under 10 CFR 851. The Maximum Credible Incident (MCI) associated with	• rans i	in the isobu	talle slieu allu tile	Gas winxing	nouse are being restored.		
Walkinough will be seneduled in	this hazard includes a fire hazard that is covered through the fire hazard analyses as well as an initiator to a cryogenic release via pipe rupture that has been previously							
consultation with AESRC.	analyzed in the sPHENIX USI for cryogens and gas use.	• Ventilation in the IR bore (~ inside Magnet doors) needs to be maintained						
	 Does the planned activity or discovered condition require additional credited controls modification to existing credited controls or processes and/or 		1		0	/		
• Target date for operation: earlier next week.	procedures that implement credited controls as described in the SAD and implemented in the ASE2	continu	ousiy.					
	Citizen Statio							
	C 169 EUR							

Additional training for new shift crews done yesterday.

https://www.c-ad.bnl.gov/esshq/snd/opm/Ch03/03-16.PDF https://www.c-ad.bnl.gov/esshq/snd/opm/Ch11/11-02-03.PDF

7/23/24

sPHENIX 2024 Run

TPC Performance with original gas (no nitrogen) mixture at 4.3 kV.

At this Voltage, cannot operate TPC safely. Permanent damage to some stripes.

However, it means that with improved stability, the performance is encouraging.

Optimal schedule –

(1) Tuesday, July 23, 2024 at 11 am – walk through of gas system

(2) 30+ hours to fully mix gas and flow

(3) Best case, turning on TPC HV on Friday, July 26, 2024

(4) Working out detailed schedule and checks (cosmics with no beam, low bunch store, ..) Still firmware issues to be worked out, many details, need for very fast analysis check turnaround, what rates can be handled... Plan to use APEX time for throughput testing.

7/23/24

Commitment versus Contribution

sPHENIX 2024

Excellent data set for photons, jets, dijets, π⁰, η, but only 15% of it with tracking (MVTX, INTT, TPOT) – think fragmentation functions, substructure, etc.

<u>Only 4 cryo-weeks left of nominal pp running for TPC commissioning and some physics.</u> Likely (TBD) request stores at 0 crossing and then steer into +1.5 mrad for TPC tests/running. Attempt to make up some physics by running full (100%) streaming (if possible).

Quite likely to want +3 weeks of pp, and then only 3 weeks of AuAu for Run-2025 prep/testing (which would mean switching on September 16, 2024) – again TBD.

7/23/24

sPHENIX 2024

Trigger Input Control						
Trigger Control						
	LL1 Server OK (ZDCN+ZDCS)/ZDC Coinc: 16 (MBD N+S >= 1)/ZDC Coinc: 58 MBD S/ZDC Coinc: 85		Rejection Factors (MBD) Jet 6: 280 Photon 2: 46 Jet 8: 2244 Photon 3: 254 Jet 10: 7849 Photon 4: 732 Jet 12: 27897 Photon 5: 2214		Livetime (MBD)	
			-			
		Scaledowr	Raw	Live	Scaled	Livetime
0: Clock		93831	9383.00 kHz	9211.00 kHz	0.10 kHz	98.17%
1: ZDC So	outh	off	176.84 kHz	173.59 kHz	0.00 kHz	98.16%
2: ZDC No	orth	off	168.01 kHz	164.90 kHz	0.00 kHz	98.15%
3: ZDC Co	oincidence	55	21.22 kHz	20.81 kHz	0.37 kHz	98.07%
8: MBD S	>= 1	off	1793.90 kHz	1759.71 kHz	0.00 kHz	98.09%
9: MBD N	>= 1	off	2272.30 kHz	2229.32 kHz	0.00 kHz	98.11%
10: MBD N	\&S >= 1	1251	1222.28 kHz	1198.83 kHz	0.96 kHz	98.08%
12: MBD N	₩S >= 1, vtx < 10	cm 47	203.98 kHz	199.88 kHz	4.16 kHz	97.99%
17: Jet 8 0	GeV + MBD NS >=	1 0	0.54 kHz	0.54 kHz	0.54 kHz	98.50%
18: Jet 10	GeV + MBD NS >:	= 1 0	0.16 kHz	0.15 kHz	0.15 kHz	98.18%
19: Jet 12	GeV + MBD NS >:	= 1 0	0.04 kHz	0.04 kHz	0.04 kHz	99.28%
21: Jet 8 0	GeV	0	0.82 kHz	0.81 kHz	0.81 kHz	98.39%
22: Jet 10	GeV	0	0.24 kHz	0.24 kHz	0.24 kHz	98.29%
23: Jet 12	GeV	0	0.07 kHz	0.07 kHz	0.07 kHz	99.55%
25: Photor	n 3 GeV + MBD NS	S>=1 4	4.81 kHz	4.72 kHz	0.94 kHz	98.14%
26: Photor	n 4 GeV + MBD NS	S>=1 0	1.67 kHz	1.64 kHz	1.64 kHz	98.17%
27: Photor	n 5 GeV + MBD NS	S>=1 0	0.55 kHz	0.54 kHz	0.54 kHz	98.06%
29: Photor	n 3 GeV	7	7.25 kHz	7.12 kHz	0.89 kHz	98.11%
30: Photor	n 4 GeV	0	2.49 kHz	2.44 kHz	2.44 kHz	98.07%
31: Photor	n 5 GeV	0	0.83 kHz	0.81 kHz	0.81 kHz	97.94%
		Reset Scaledowns	Select Triggers	s Expert Cont	rol	

Monday, July 22, 2024 at 2:00 pm...

	Triç	ger Contr	ol		
LL1 Server Ol (ZDCN+ZDCS)/ZDC C (MBD N+S >= 1)/ZDC C MBD S/ZDC Coinc: MBD N/ZDC Coinc	K 1 binc: 26 coinc: 93 147 194	Rejection Factor Jet 6: 397 Jet 8: 3461 Jet 10: 12639 F Jet 12: 49619 F	s (MBD) Photon 2: 56 Photon 3: 345 Photon 4: 1122 Photon 5: 3357	Livetime (MBD)	
	Scaledown	Raw	Live	Scaled	Livetime
0: Clock	93831	9383.00 kHz	9219.95 kHz	0.10 kHz	98.26%
1: ZDC South	off	49.98 kHz	49.10 kHz	0.00 kHz	98.24%
2: ZDC North	off	46.60 kHz	45.78 kHz	0.00 kHz	98.25%
3: ZDC Coincidence	9	3.71 kHz	3.63 kHz	0.36 kHz	97.96%
8: MBD S >= 1	off	546.76 kHz	536.35 kHz	0.00 kHz	98.10%
9: MBD N >= 1	off	718.14 kHz	704.81 kHz	0.00 kHz	98.14%
10: MBD N&S >= 1	348	346.61 kHz	339.85 kHz	0.97 kHz	98.05%
12: MBD N&S >= 1, vtx < 10 cm	24	169.81 kHz	166.30 kHz	6.65 kHz	97.93%
17: Jet 8 GeV + MBD NS >= 1	0	0.10 kHz	0.10 kHz	0.10 kHz	97.67%
18: Jet 10 GeV + MBD NS >= 1	0	0.03 kHz	0.03 kHz	0.03 kHz	96.23%
19: Jet 12 GeV + MBD NS >= 1	0	0.01 kHz	0.01 kHz	0.01 kHz	100.00%
21: Jet 8 GeV	0	0.19 kHz	0.19 kHz	0.19 kHz	97.88%
22: Jet 10 GeV	0	0.06 kHz	0.06 kHz	0.06 kHz	96.60%
23: Jet 12 GeV	0	0.02 kHz	0.02 kHz	0.02 kHz	100.00%
25: Photon 3 GeV + MBD NS >= 1	1	1.00 kHz	0.98 kHz	0.49 kHz	97.93%
26: Photon 4 GeV + MBD NS >= 1	0	0.31 kHz	0.30 kHz	0.30 kHz	98.24%
27: Photon 5 GeV + MBD NS >= 1	0	0.10 kHz	0.10 kHz	0.10 kHz	98.50%
29: Photon 3 GeV	1	1.74 kHz	1.70 kHz	0.85 kHz	98.11%
30: Photon 4 GeV	0	0.56 kHz	0.55 kHz	0.55 kHz	98.12%
31: Photon 5 GeV	0	0.20 kHz	0.20 kHz	0.20 kHz	97.92%
Rese	t Scaledowns	Select Trigger	s Expert Cont	rol	

Input parameters - example real store ZDCNS, store length, delay between 1st and 2nd experiment, time between stores, MD/APEX time each week. Last two values tuned to get 15 stores/week, matching RHIC performance.

Output results – number of stores per week, relative luminosities between 1st and 2nd experiment and changes if bringing both experiments into collisions at the same time.

Important for RHIC to continue to push on intensity, which is difficult if start of store is beam-beam limited.