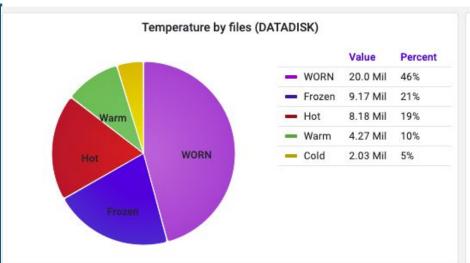
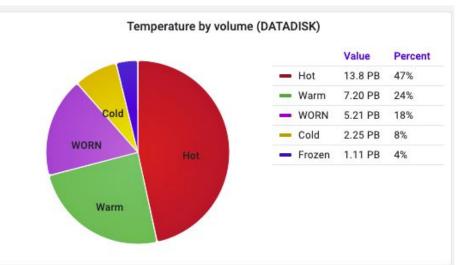


LDRD:Data Popularity, Placement Optimization and Storage Usage Effectiveness at the Data Center

Qiulan Huang(SDCC) 10/05/2023


LDRD project


- Project title:Data popularity, placement optimization and storage usage effectiveness at Data Center
- People: SDCC/CSI (a cross-directorate project)
 - Qiulan Huang (PI, data collection, analytics, SDCC)
 - Vincent Garonne (Advisor, data mgt, SDCC)
 - Xin Dai (Large-scale data analysis, AI/ML, CSI)
 - o Ai Kagawa (Al/ML algorithms, CSI)
- Term: 2022- 2024

Data Temperature

July, 2023: 43.65 M files, 29.57PB

Hot: Last access in the last month

Warm: Last access in the last 6 months

Cold: Last access between 6 months and one year

Frozen: Not accessed in the last year

WORN(Write Once Read Never): No access

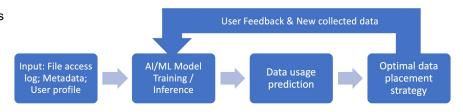
AI/ML For Storage Optimization

Motivation

- In the current multi-tier storage "class" system at the Data Center
 - Unused data is stored on expensive storage
 - Fast IO storage is not currently used effectively

Goals

- Design an efficient monitoring platform to collect the relevant information from various distributed data sources
- Develop an optimal data management system for the data center to maximize usable space while minimizing access latency, within budget, hardware, and compliance constraints
 - Heavy use of storage, metadata and data popularity information
 - Develop a precise AI/ML prediction model to possibly forecast the future usage of the data
 - Orchestration of data for optimal movement and placement

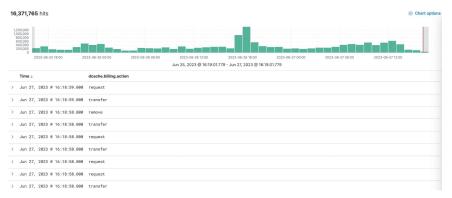


Research approach

- Using ELK stack(Elasticsearch+Logstash+Kibana) for data collection and analytics
 - Collect and aggregate log data from a variety of sources using Logstash
 - Transform, process, and enrich log data using Logstash+Kibana
 - Index and search log data using Elasticsearch API
- Develop AI/ML models for the data popularity prediction(Baseline AI/ML Models)
 - XGBoost
 - Gradient Boosting
 - Random Forests
 - Linear Regression
 - Support Vector Machine
 - Deep Neural Network
- Based on the data popularity prediction results, will develop optimal data placement strategy

Competitive Advantages

- Big scale storage has large volume of data to provide the big data statistics needed for AI
- Aggregate a variety of data sources to a central data storage
- Standard API to get data and preprocess data
- Utilize comprehensive data and be versatile to the change of storage infrastructure and user feedback



Data collection and Analysis

- Has collected data of the past 2 years
 - Data volume: ~11TB
 - ~10GB in average per day, 5~8 million events per day
 - o Data source: billing logs, domain logs, etc from various experiments like usatlas, Belle2, etc

Time: one day	size	records
Raw data	13GB	5,604,498
Preprocessed data	2.7GB	5,604,498

- Maintaining this LDRD's <u>GitHub organization</u> to favor collaboration, expertise sharing and maintain contributions
 - Data collection and analysis.[repo]
 - Prediction algorithm codes,[repo]
 - Statistical Analysis and Visualization repository [repo]

Data preprocessing (1)

- Define the tabular data or comma-separated values (CSV) file format for AI model
 - file id, action (create, transfer, delete), file size, file type, user id, timestamp, file path

File Name	Data	Time	Size	User	Last_Month_Fre		Last_Year_Freq_ Access				
file_1					File	A ID		Data	T:		
file_2					Name	Access I	D	Data		Time	
					file_1						
					file_2						

client,initiator,isnew,protocol,transfersize,fullsize,storageclass,connectiontime,action,cellname,datestamp,errorcode,errormessage,pnfsid,transaction,p2p,fqan,mappeduid,mappedgid, owner

2620:0:210:9800:0:0:0:58,door:WebDAV2-dcdoor32-externalipv6@webdav2-dcdoor32_httpsDomain:AAYE5RL/laA:1694231773007000,f,Http-1.1,5241995048,5241995048,bnlt0d1:BNLT0D1@osm, 227423,transfer,dc247 6@dc247sixDomain,2023-09-09

00:00:00.471-04,0,"",00002E5FB57E25ED4ABB9EC77C50A91506F8,pool:dc247_6@dc247sixDomain:1694232000471-30895,f,,6435,31152,usatlas1

130.199.156.212,door:Xrootd-dcdoor26-internal@xrootd-dcdoor26Domain:AAYE4Wx9LwA:1694216094645000,f,Xrootd-5.0,1518066459,6277020158,bnlt0d1:BNLT0D1@osm,15906439,transfer,dc 217_17@dc217seventeenDomain,2023-09-09

00:00:01.264-04,0,"",0000C63A128736694894975673B942BA62B2,pool:dc217_17@dc217seventeenDomain:1694232001264-27578,f,/atlas,6439,69907,/DC=ch/DC=cern/OU=Organic Units/OU=Users/CN=atlpilo2/CN=663551/CN=Robot: ATLAS Pilot2

130.199.156.172,door:Xrootd-dcdoor36-internal@xrootd-dcdoor36Domain:AAYE5RwlLCA:1694231967445000,f,Xrootd-5.0,3640735851,3640735851,bnlt0d1:BNLT0D1@osm,33764,transfer,dc220_5@dc220fiveDomain.2023-09-09

00:00:01.314-04,0,"",0000805023C18CA54D9F8CDC96E10CB82EF0,pool:dc220_5@dc220fiveDomain:1694232001314-31426,f,/atlas/Role=production,6435,31152,/DC=ch/DC=cern/OU=Organic Units/OU=Users/CN=atlpilo1/CN=614260/CN=Robot: ATLAS Pilot1

Data Preprocessing(2)

Datasets

- Our datasets consist of metadata records on the last access for several million files stored on the SDCC.
- Initial batches of records consisted of data labeled by the datetime of last access, access type, file path, date, time, and other details.
- Later batches were further preprocessed and have labels such as client, initiator, protocol, transfer size, full file size, storage class, connection time, file ID, and file owner.

Data Preprocessing:

Two datasets

- "Reduced set" of 2300 hot data and 1900 cold data records
- 2. "Large set" of 15000 hot data and 15000 cold data records
- The dataset used in this study is first labeled as "hot" or "cold" based on the timestamp information.
- Inputs of the model: Categorical columns (Action, File Path, and details) are converted to **one-hot encoding** as inputs for our model training.

Model and Results

Model Architecture:

- Input of the model: one-hot encoding of the Categorical columns
- A deep neural network model consisting of three fully connected layers
- Each is followed by a ReLU activation function.
- Output of the model: hot-or-cold classification

Model Training:

- The preprocessed dataset is randomly split 80/20 into training and testing sets.
- The model is trained on the training set using the Adam optimizer and using the Cross Entropy Loss function, with a hidden size of 64 neurons and learning rate of 0.001.
- The training loop iterates for 10 epochs, and the model's parameters are updated to minimize the loss.

Model Evaluation:

 After training, the model's performance is evaluated on the testing set to assess its predictive accuracy, precision, and recall.

	Reduced Set	Large Set (Hot)	Large Set (Cold)	
Accuracy	82.15%	90.53%		
Recall	76.36%	81.03%	99.87%	
Precision	94.27%	99.67%.	84.37%	

This work was accepted for the undergraduate student poster at SC23

Distributed Data Parallel (DDP)

- Distributed Data Parallel (DDP), allowing our model to utilize multiple GPUs in multiple nodes using the BNL's Institutional Cluster (IC), further accelerated our analysis.
- Utilizing <u>the PyTorch's "Torch Distributed Elastic" feature</u>.
 - Worker failures are handled gracefully by restarting all workers.
 - Worker RANK and WORLD SIZE are assigned automatically.
 - Number of nodes is allowed to change between minimum and maximum sizes (elasticity).
- Preliminary Scaling Results using BNL IC AI cluster
 - NVIDIA V100 GPUs.

# of GPUs			# of batches processed per GPU in each epoch	
1	1	82.5	188	32
nokhaven. 4	2	44.9	47	32

Summary

- The project is progressing steadily according to the plan
 - Various data sources have been collected, aggregated and being processed
 - Evaluate the baseline model and train data
 - Completed the LDRD Mid-year review
- Supported a SULI student's work, which has been accepted for undergraduate student poster at SC23
- A potential new program "<u>Tiering storage at a data center</u>" will grow from the work
 - Will introduce the work like data popularity prediction model to decide data placement among various storage classes
- Next step
 - O Complete the develop the state-of-the-art data usage prediction model
 - Quality Assurance & Control of training data & performance monitoring
 - Implement the policy engine and data placement tool
 - Put hot data on good pools and cold data on the old generation pools
 - A student intern will join

