Experience with MCP-PMT Studies

Albert Lehmann (Universität Erlangen-Nürnberg)

- Types of latest MCP-PMTs studied
- Quantum and collection efficiency (QE, CE)
- Gain (with and without B-field)
- 3-axis stepper and homogeneity measurements of QE and gain
- Measurement of time resolution and rate capability
- "Escalation"
- Lifetime measurements
- Combination of 3-axis stepper with DiRICH/TRB3 DAQ for quality control measurements of Photonis MCP-PMTs
- Measurement of DCR, recoil electrons, afterpulses and crosstalk

Latest tested 2-inch Multi-Anode MCP-PMTs

Hamamatsu R13266

- first prototypes (2014) with 1-layer
 ALD coating + film in front of 1st MCP
 → poor collection efficiency (CE)
- Iatest versions are without a film to improve P/V ratio of pulse heights → normal CE (~65%)
- available as 8x8 and 6x128 anode array
- active / total size: 51x51 / 61x61 mm²
- active area ratio: 70%
- pore size: 10 µm
- very expensive!

Albert Lehmann

Photonis XP85112

- Iayout existent since Burle Planacons
- 1- (and 2-)layer ALD coatings; no film
- available as 8x8 and 3x100 anode array
- active / total size: 53x53 / 59x59 mm²
- active area ratio: 81%
- pore size: 10 µm (and 25 µm)
- latest models with improved backplane to reduce oscillations and crosstalk
- improvements to catch most electrons bouncing back at MCP-in → CE > 90%
 - D. Orlov et al., JINST 13 (2018) C01047

eRD110 Meeting -- October 12, 2023

Photek MAPMT253

- rather new development !
- 1-layer ALD coating; no film
- available as 8x8 to 64x64 anode array
- customer configurable anode readout and interconnect
- active / total size: 53x53 / 61x62 mm²
- active area ratio: 74%
- pore size: 15 μm and 6 μm
- CE ≥ 80%
- ongoing performance improvements

$$QE_{PC}(\lambda) = QE_{ref}(\lambda) \cdot \frac{I_{PC}(\lambda) - I_{dark,PMT}}{I_{ref}(\lambda)}$$

Albert Lehmann

QE(λ) setup

- Monochromator LOT Oriel MSH301 (later named Oriel Cornerstone 260)
- <1 nm resolution from 200 to 800 nm</p>
- Hamamatsu S6337 reference diode
- Keithley 487 picoammeter
- ~5 mm light spot at PC (no saturation)
- Measure I_{PC}(λ) (few nA) directly at PC with 200 V between PC and MCP-in

QE results

- QE of older MCP-PMTs around 20%
- Latest PMTs with peak QE up to 30%
 - Hamamatsu, Photonis, and Photek
 - Some enhanced in UV region
- QE of latest Photonis PMTs can be tailored to customer needs
 - Narrow bands around blue, green, red available

Collection Efficiency (CE)

- CE measurement is easy in principle, but very low currents (~10 pA @30 MHz [~2 p.e.]) at PC
 - N_{pe@anode} from pulse height spectrum
 - N_{pe@PC} from PC current scaled by diode current ratio
- Final result is taken as the mean of several intensity and frequency configurations
- Most recent MCP-PMTs with ~85 95% CE
- CE depends on HV between PC and MCP-in

$$S_{MCP}(x) = \sum_{n=0}^{24} \left\{ \frac{\mu^{n} \cdot e^{-\mu}}{n!} \cdot \frac{1}{\sigma_n \sqrt{2\pi}} \cdot \exp\left[-\frac{(x - Q_n)^2}{2\sigma_n^2} \right] \right\}$$

Important

- Moderate photon rate (kHz) per area to avoid saturation
- Saturation causes distorted pulse height distributions

Gain

- Good P/V in single photon pulse height spectra at ~10⁶
- Voltage from <2.0 to 2.8 kV for 10⁶ gain
- Photonis PMTs operated at various voltage divider ratios (R_{PC}:R_{MCP}:R_A = 4:10:1 to 2:10:1 instead of standard 1:10:1) → improves RMS time resolution

Photek MAPMT253 [A1200116]

σĺ

1.789e+04 / 992

 -0.5657 ± 0.0028

 0.3824 ± 0.0022

F1 2760V 0deg 1.2T 20x blau 00000.txt

Gain = 1.2653e+06

Gain in B-Field

- ALD PMTs much more sensitive to B-field
 - **non-ALD**: Gain ratio $0T/1T \le 1$
 - ALD: Gain ratio $0T/1T \approx 3$ for 6 µm and 10 µm
- Still very good P/V ratio at 1 T
- Gain ratio between 1T and 2T

Hamamatsu

magnetic field B TT

Hamamatsu R10754-00-L4 10um

01 un

 10^{6}

 10^{5}

Albert Lehmann

• U = 2500 V U = 2600 V

▲ U = 2700 V

▼ U = 2800 V

0.5

- 2 5 for 6 µm dependent on tilt angle
- 10 20 for 10 µm dependent on tilt angle
- Photonis 3x100 less sensitive than 8x8

Photek (8x8, ALD, 6 µm)

Photonis (8x8, ALD, 10 µm)

3-axis Stepper for Automated xy-Scans

Albert Lehmann

Self-built 3-axis stepper

- ~40 cm in x- and y-direction; ~15 cm in z-direction
 - \rightarrow scan of four (or more) 2-inch MCP-PMTs simultaneously
- "C-Beam" profiles linear guidance system (extruded aluminum)
- Step motors controlled by TMC2130 Trimanic step motor drivers
 - sensor-less engine load detection which notices when stepper runs against boundaries or other parts
 - Steering done by "Teensy 3.5" microcontrollers programmed in an Arduino development environment
 - Theoretically possible: distance of 2.5 µm per step
 - Reachable true positioning accuracy $\leq 10 \ \mu m$ (tested with CCDs)
- Micro-focus lens system attached to 3-axis stepper
 - Focus can be adjusted by moving the lens position along z
 - Light spots down to <50 µm peak width possible (aperture needed)
 - Lens usually not fully focused to avoid charge saturation effects
- Mono-mode optical fiber between PiLas laser head and lens system
- Typical photon rates of 1 100 kHz per measurement point

• ~300k p.e. (ND0) @ 100 kHz \rightarrow I_{PC} ~ 5 nA

- generally good homogeneity
- QE max/min ratio <1.2 for >>90% of active area
- worse at rims and corners

Albert Lehmann

eRD110 Meeting -- October 12, 2023

• ~1 p.e. @ 50 kHz @ 10⁶ gain \rightarrow I_{anode} ~ 8 nA

gain max/min ratio <3 for 90% of active area</p>

moderate homogeneity (QE corrected)

Iower gain always at rims and corners

Time Resolution

Time resolution measurements

- Usually done with LeCroy WavePro 7300A scope
- Sometimes with CAEN DT5742B digitizer
- Photon intensity at single photon level and low rate
- Jitter between Pilas trigger and anode signal
 - Anode charge + time delay: timewalk correction
- Different voltage divider configurations
 - $R_{PC}:R_{MCP}:R_A = 1:10:1 \rightarrow rather poor RMS resolution$
 - 4:10:1 \rightarrow much better time resolution (and good CE)

Rate Capability

- Anode current measurement ("current mode")
 - Homogeneous illumination of full active surface for different laser frequencies f and light intensities
 - All anode pixels shorted → measure anode current

$$G_{rel} = \frac{I_{anode@f} - I_{anode,dark}}{I_{anode@f_{ref}} - I_{anode,dark}} \cdot \frac{I_{diode@f_{ref}} - I_{diode,dark}}{I_{diode@f} - I_{diode,dark}}$$

- Situation is similar to what is expected in reality
- Pulse height measurement ("pulse mode")
 - Illumination of one anode pixel with different laser frequencies and intensities
 - Measure the pulse height distribution with an oscilloscope and unfold it with a fit $\rightarrow N_{pe}$ and gain G

$$\frac{I_{anode}}{A} = \frac{f \cdot e \cdot G \cdot N_{pe}}{A}$$

Usable to study rate dependence at different positions

Results

- Ideally same rate dependency for both modes
- Sometimes they show different slopes (R uniformity?)

- New "escalation" effect seen in MCP-PMTs
 - MCP-PMT behavior may change suddenly (voltage change of ~10 V can be enough)
 - Dependent on photon intensity and high gain (at high gain even darkcounts may trigger the effect)
 - Effect was never seen with 1-layer ALD tubes
 - Until now only observed in Photonis MCP-PMTs with 2 ALD layers (what about LAPPD and HRPPD?)

Signatures

- Massive count rate (dark current) increase of several orders of magnitude
- Significant gain drop (saturation)
- Drop of the MCP resistance
- Significant production of photons with white spectrum
- The whole effect seems suppressed already in moderate B-fields
- Likely Explanation
 - Photons are generated in ALD layer and/or electrode
 - Many escalation photons trigger a recoupling in PC

Measurement of MCP-PMT Lifetime

Continuous illumination

- LED pulse generator (~5 ns, 70 V) triggers a 460 nm LED at ~1 MHz rate (comparable to PANDA DIRCs)
- In front of MCP-PMT attenuated to single photon level
- All MCP-PMTs share same light spot (~30x30 cm²) [quite homogeneous by using a thick lens and a Thorlabs ED1-S50-MD rectangular diffuser]

CAEN VME DAQ

- Permanent recording of MCP pulse height (at a highly prescaled rate) → integrated anode charge (IAC)
- Determine gain + DCR before and after QE measurement

Q.E. measurements

- Same setups as in normal QE scans (λ and xy-position)
- Every 4-6 weeks: wavelength scan
- Every 3-4 months: complete surface scan at 372 nm

Albert Lehmann

Results with ALD-coated MCP-PMTs

- Expected integrated anode charge (IAC) in 10 years PANDA: (at 50% duty-cycle, 20 MHz antiproton-proton average annihilation rate, 10⁶ sensor gain)
 - ~5 C/cm² for PANDA Barrel DIRC and even more for Endcap Disc DIRC
 - Older MCP-PMTs had >50% QE loss after <200 mC/cm² IAC → few months lifetime
 - Aging problem solved by coating the MCP pores with an atomic layer deposition (ALD) technique
- IAC >5 C/cm² for most ALD MCP-PMTs
 - Confirmed by other measurements
- Lifetime of best MCP-PMTs with ALD coating
 - 38 C/cm² for Photonis 9001393 with 2 ALD layers
 - Increase by factor ~200 compared to 2011 !
 - Latest Photonis (2 ALD layers) at ~8 C/cm²
 - Photek A2200606 (1 ALD) at ~4 C/cm² \rightarrow **QE loss**

Signature of Vacuum Microleaks

Albert Lehmann

- QE xy-scans same as in homogeneity tests
- Within typically months the tubes loose QE starting somewhere at a corner or the rim
 - Already after PMT delivery a lower QE is visible in one of more small spots
 - QE loss starts growing from these spots
 - Finally spreads across whole PC
 - Obviously QE does not vanish completely
- Examples of PC aging without illumination:
 - Some of the first Hamamatsu 2-inch MCP-PMTs
 - The first Photek 2-inch tubes we received
 - Two of the most recent Photonis MCP-PMTs (reason was a broken brazing furnace)
- A bit worrisome: we have observed this in one tube that was good for ~2 years
 - after B-field tests: caused by handling or B-forces?

Dirich/Trb3 DAQ

FPGA based DAQ: TRB3, DiRICH, 4 PMTs/backplane

- Developed at GSI for HADES and CBM
- 32 chan. DiRICH FEE boards: amplification, discrimination, TDC, ToT
- 256 chan. TRB3: distribution of trigger signals and accumulation of data
- Power supply and data concentrator card at each backplane
- < 20 ps RMS; 700 kHz max. trigger rate</p>

DiRICH/TRB3 DAQ-system:

A.Neiser et al., JINST 8 (2013) C12043 C. Ugur et al., JINST 11 (2016) C01046 J. Michel et al., JINST 12 (2017) C01072 A. Rost et al., JINST 12 (2017) C02047 The TRB3 website: http://trb.gsi.de

DiRICH

eRD110 Meeting -- October 12, 2023

Albert Lehmann

PMT Quality Control Scans with DiRICH/TRB3

Automated quality control measurements for series production Barrel DIRC MCP-PMTs

Measure time delay between laser pulse and pixel response
For easier analysis laser peak shifted to 100 ns for all channels

- <u>Each channel:</u> permanently recording time and timeover-threshold (ToT) information of all hits above a freely selectable threshold
- Record all hits for each pixel within a certain time window (e.g., -10 to +1 µs) around PiLas trigger
- xy-scans (½ 1 mm steps): information per channel
 - x-, y-position, hit time, ToT, number of hits
 - Time resolution (TTS and RMS) per anode pixel
- 3D-info (x,y,t) allows access to higher level information
 - Darkcount xy-distributions
 - Charge sharing (and electronic) crosstalk behavior
 - Recoil electron distributions (position and time)
 - Afterpulse distributions \rightarrow TOF of feedback ions

Albert Lehmann

Information from DiRICH/TRB3 Scans

Albert Lehmann

eRD110 Meeting -- October 12, 2023

È

 \overrightarrow{F}

Example Results of xy-Scans with DiRICH/TRB

!! All results obtained with one single xy-scan of ~21 hours (1/2 mm steps; 13689 measured positions) !!

Albert Lehmann

Determination of Electronic Crosstalk

Only one pixel (x4-y4) illuminated

- TRB position scans may be used to quantify electronic cross talk
 - Take data where only one pixel was illuminated (here 2.5x2.5 mm² of pixel x4-y4)
 - Determine fraction of detected hits (dark count corrected) in every pixel normalized to x4-y4
 - Adjacent pixels to x4-y4 are also populated with recoil and afterpulse hits
 - After DCR correction pixels in second (and further) rows should contain mainly electronic crosstalk hits

Crosstalk maps and time distributions

- Electronic crosstalk across the whole active PMT area is typically ~1% or lower
- Depends on MCP-PMT and HV divider configuration
- Analyzes show that afterpulse hits (high amplitude) create much more electronic crosstalk
- Time distributions may show "funny" structures

Electron Focusing inside Magnetic Fields

Photonis 9002224 (8x8 px): x-scan (50 μ m steps) of 4 pix read out by TRB DAQ \rightarrow less charge sharing crosstalk

Photonis 946P541 (100x3 px): x-scan (25 µm steps) to test space and time distributions of **recoil hits** with TRB DAQ

Crosstalk between anode pixels

- Better defined pixel position already at B = 0.1 T
- Fewer charge sharing crosstalk (electrons focused)
- Distribution of recoil electrons
 - Spatial spread shrinks with increasing B-field
 - Slope of time distribution unaffected

Albert Lehmann

Comparison of Photek and Photonis PMTs

Derformences from evaluation of 2 inch MCD DMTs for DANDA Derrol DIDC		Performance Values				
Performances from evaluati	normances from evaluation of 2-inch MCP-PM is for PANDA Barrel DIRC		Photek		Photonis	
Performance Parameter	Barrel DIRC Requirement	A1200107	A3191220	9002192	9002193	
Active area ratio (%)	>72	74.1	74	76.6	79.8	
Useful area (cm ²)	2"x2" = 25.8	28.1	27.6	26.5	27.6	
Number of pixels	64 (8x8)	OK	OK	OK	OK	
Outer dimension	58 mm x 58 mm to 62 mm x 62 mm	61.4x61.9	60.3x61.8	58.8x58.8	58.8x58.8	
Front window material	sapphire or fused silica	OK	OK	OK	OK	
Spectral range	QE (%) at 290 nm	>20	>20	>20	>20	
Darkcount rate (Hz/cm ²)	< 1000	263	69	24	183	
TTS (ps)	<= 50	40	36	26	27	
RMS timing precision (ps)	150-200 ps or better in [-0.5+2] ns time window around main peak at standard operating voltage (less than 3.0 kV at B = 0 T)	215	199	109	109	
Afterpulse fraction (%)	< 2% @10 ⁶ gain	0.14	0.49	1.74	0.79	
10 ⁶ Gain at voltage (V) with standard divider	at least 10 ⁶ @ standard operating voltage (less than 3.0 kV at B = 0 T)	2400	2300	1960	1880	
Rate capability (current; pulse mode)	10% max gain loss at 0.5 MHz/cm ² @10 ⁶ gain	1; 0.8	1; 0.95	0.92; 0.95	0.93; 0.95	
Pulse height distribution (P/V)	typical P/V > 3 measured on the total area @10 ⁶ gain (0 T; 1 T)	2.7 ; 7.1	2.2 ; 6	2.6 ; 3.6	3.2; 2.8	
Peak quantum efficiency (QE) at 300-400 nm	>= 18%	24.4	25.0	22.2	24.7	
Collection efficiency (CE)	>= 65%	95	72	76	75	
Detective quantum efficiency DQE = CE*QE	>= 12%	23.2	17.9	16.8	18.5	
Gain uniformity across active area	max/min ratio 3 or better	7.7	12.5	4.2	3.1	
QE uniformity at peak wavelength	max/min ratio <1.15 in central sensor region (inner 2x2 pixels), <3 elsewhere	1.02; 1.92	1.04; 8.33	1.0; 1.28	1.01; 1.35	
High magnetic field compatibility	≤10 µm pores MCPs	6	6	10	10	
Lifetime (QE drop)	<5% QE drop at 2 C/cm ² and <10% QE drop after 5 C/cm ² of IAC at 400 nm	~50% @ 1 C	~75% @ 1 C	~0% @ 8 C	~0% @ 8 C	

Albert Lehmann