Experience with MCP-PMT Studies

Albert Lehmann (Universität Erlangen-Nürnberg)

- Types of latest MCP-PMTs studied
- Quantum and collection efficiency (QE, CE)
- Gain (with and without B-field)
- 3-axis stepper and homogeneity measurements of QE and gain
- **Measurement of time resolution and rate capability**
- "Escalation"
- Lifetime measurements
- Combination of 3-axis stepper with DiRICH/TRB3 DAQ for quality control measurements of Photonis MCP-PMTs
- Measurement of DCR, recoil electrons, afterpulses and crosstalk

Latest tested 2-inch Multi-Anode MCP-PMTs

Hamamatsu R13266

- **first prototypes (2014) with 1-layer** ALD coating + film in front of 1st MCP \rightarrow poor collection efficiency (CE)
- latest versions are without a film to improve P/V ratio of pulse heights → **normal CE (~65%)**
- available as 8x8 and 6x128 anode array
- active / total size: 51x51 / 61x61 mm²
- **active area ratio: 70%**
- pore size: **10 μm**
- very expensive!

Photonis XP85112

- **layout existent since Burle Planacons**
- 1- **(and 2-)layer** ALD coatings; no film
- **a** available as 8x8 and 3x100 anode array
- active / total size: $53x53$ / $59x59$ mm²
- **active area ratio: 81%**
- pore size: **10 μm** (and **25 μm**)
- **I** latest models with improved backplane to reduce oscillations and crosstalk
- **improvements to catch most electrons** bouncing back at MCP-in **→ CE > 90%**
	- D. Orlov et al., JINST 13 (2018) C01047

Albert Lehmann eRD110 Meeting -- October 12, 2023 **2**

Photek MAPMT253

- **rather new development !**
- **1-layer ALD coating; no film**
- available as 8x8 to 64x64 anode array
- customer configurable anode readout and interconnect
- active / total size: 53x53 / 61x62 mm²
- **active area ratio: 74%**
- pore size: **15 μm** and **6 μm**
- **CE ≥ 80%**
- ongoing performance improvements

$$
QE_{PC}(\lambda) = QE_{ref}(\lambda) \cdot \frac{I_{PC}(\lambda) - I_{dark, PMT}}{I_{ref}(\lambda)}
$$

\bullet QE(λ) setup

- Monochromator LOT Oriel MSH301 (later named Oriel Cornerstone 260)
- <1 nm resolution from 200 to 800 nm
- Hamamatsu S6337 reference diode
- Keithley 487 picoammeter
- ~5 mm light spot at PC (no saturation)
- Measure $I_{PC}(\lambda)$ (few nA) directly at PC with 200 V between PC and MCP-in

QE results

- QE of older MCP-PMTs around 20%
- Latest PMTs with peak QE up to 30%
	- Hamamatsu, Photonis, and Photek
	- Some enhanced in UV region
- QE of latest Photonis PMTs can be tailored to customer needs
	- Narrow bands around blue, green, red available

Albert Lehmann **and Strutter Community Community** eRD110 Meeting -- October 12, 2023

Collection Efficiency (CE)

- CE measurement is easy in principle, but very low currents (~10 pA @30 MHz [~2 p.e.]) at PC
	- \bullet N_{pe@anode} from pulse height spectrum
	- \bullet N_{pe@PC} from PC current scaled by diode current ratio
- Final result is taken as the mean of several intensity and frequency configurations
- **Most recent MCP-PMTs with ~85 95% CE**
- CE depends on HV between PC and MCP-in

$$
S_{MCP}(x) = \sum_{n=0}^{24} \left\{ \frac{\mu^n \cdot e^{-\mu}}{n!} \cdot \frac{1}{\sigma_n \sqrt{2\pi}} \cdot \exp\left[-\frac{(x - Q_n)^2}{2\sigma_n^2} \right] \right\}
$$

Important

- Moderate photon rate (kHz) per area to avoid saturation
- Saturation causes distorted pulse height distributions

Gain

- Good P/V in single photon pulse height spectra at \sim 10⁶
- Voltage from <2.0 to 2.8 kV for 10 $^{\circ}$ gain
- Photonis PMTs operated at various voltage divider ratios ($R_{PC}:R_{MCP}:R_A = 4:10:1$ to 2:10:1 instead of standard 1:10:1) **→ improves RMS time resolution**

Albert Lehmann eRD110 Meeting -- October 12, 2023 **5**

Photek MAPMT253 [A1200116] F1 2760V 0deg 1.2T 20x blau 00000.txt

1.789e+04 / 992

Gain in B-Field

- ALD PMTs much more sensitive to B-field
	- non-ALD: Gain ratio 0T/1T ≤ 1
	- **ALD:** Gain ratio 0T/1T ≈ 3 for 6 μm and 10 μm
- Still very good P/V ratio at 1 T
- Gain ratio between 1T and 2T

gain

 $10⁶$

 $10⁵$

Photonis 3x100 less sensitive than 8x8

 $\frac{1}{2}$
counts

 10

 10^4

Photek (8x8, ALD, **6 μm**) Photonis (8x8, ALD, 10 μm)

 $\frac{16}{8}$ 10^{\circ}

 10^3

 $10²$

Photek A1200107 (2500 V, 1 T, 0 deg)

Gain = $1.041e+06$

 $N(p.e.) = 1.241$

Photonis 9002192 (2600 V, 1 T, 0 deg)

Gain = $1.0047e+06$

 $N(p.e.) = 0.61986$

3-axis Stepper for Automated xy-Scans

• Self-built 3-axis stepper

- \sim ~40 cm in x- and y-direction; \sim 15 cm in z-direction
	- \rightarrow scan of four (or more) 2-inch MCP-PMTs simultaneously
- "C-Beam" profiles linear guidance system (extruded aluminum)
- Step motors controlled by TMC2130 Trimanic step motor drivers
	- sensor-less engine load detection which notices when stepper runs against boundaries or other parts
	- Steering done by "Teensy 3.5" microcontrollers programmed in an Arduino development environment
	- Theoretically possible: distance of 2.5 μm per step
	- Reachable true positioning accuracy ≤10 μm (tested with CCDs)
- Micro-focus lens system attached to 3-axis stepper
	- **Focus can be adjusted by moving the lens position along z**
	- Light spots down to <50 μm peak width possible (aperture needed)
	- **Lens usually not fully focused to avoid charge saturation effects**
- Mono-mode optical fiber between PiLas laser head and lens system
- Typical photon rates of 1 100 kHz per measurement point

 \bullet ~300k p.e. (ND0) @ 100 kHz \rightarrow I_{PC} ~ 5 nA

- **generally good homogeneity**
- QE max/min ratio <1.2 for >>90% of active area
- worse at rims and corners

Albert Lehmann eRD110 Meeting -- October 12, 2023 **8**

 \sim 1 p.e. @ 50 kHz @ 10⁶ gain \rightarrow l_{anode} \sim 8 nA

• gain max/min ratio <3 for 90% of active area

• moderate homogeneity (QE corrected)

• lower gain always at rims and corners

Time Resolution

Time resolution measurements

- Usually done with LeCroy WavePro 7300A scope
- Sometimes with CAEN DT5742B digitizer
- Photon intensity at single photon level and low rate
- Jitter between Pilas trigger and anode signal
	- Anode charge + time delay: timewalk correction
- Different voltage divider configurations
	- $R_{PC}:R_{MCP}:R_A = 1:10:1 \rightarrow$ rather poor RMS resolution
	- 4:10:1 \rightarrow much better time resolution (and good CE)

eRD110 Meeting -- October 12, 2023

Rate Capability

- Anode current measurement ("current mode")
	- Homogeneous illumination of full active surface for different laser frequencies f and light intensities
	- All anode pixels shorted \rightarrow measure anode current

$$
G_{rel} = \frac{I_{anode@f} - I_{anode,dark}}{I_{anode@f_{ref}} - I_{anode,dark}}} \cdot \frac{I_{diode@f_{ref}} - I_{diode,dark}}{I_{diode@f} - I_{diode,dark}}}
$$

- Situation is similar to what is expected in reality
- Pulse height measurement ("pulse mode")
	- Illumination of one anode pixel with different laser frequencies and intensities
	- Measure the pulse height distribution with an oscilloscope and unfold it with a fit \rightarrow N_{pe} and gain G

$$
\frac{I_{anode}}{A} = \frac{f \cdot e \cdot G \cdot N_{pe}}{A}
$$

• Usable to study rate dependence at different positions

• Results

- Ideally same rate dependency for both modes
- Sometimes they show different slopes (R uniformity?)

- New "escalation" effect seen in MCP-PMTs
	- MCP-PMT behavior may change suddenly (voltage change of ~10 V can be enough)
	- Dependent on photon intensity and high gain (at high gain even darkcounts may trigger the effect)
	- Effect was never seen with 1-layer ALD tubes
	- Until now only observed in Photonis MCP-PMTs with 2 ALD layers (what about LAPPD and HRPPD?)

• Signatures

- Massive count rate (dark current) increase of several orders of magnitude
- Significant gain drop (saturation)
- Drop of the MCP resistance
- Significant production of photons with white spectrum
- The whole effect seems suppressed already in moderate B-fields
- Likely Explanation
	- Photons are generated in ALD layer and/or electrode
	- Many escalation photons trigger a recoupling in PC

eRD110 Meeting -- October 12, 2023

Measurement of MCP-PMT Lifetime

Continuous illumination

- LED pulse generator (~5 ns, 70 V) triggers a 460 nm LED at ~1 MHz rate (comparable to PANDA DIRCs)
- In front of MCP-PMT attenuated to **single photon level**
- All MCP-PMTs share same light spot (~30x30 cm²) [quite homogeneous by using a thick lens and a Thorlabs ED1-S50-MD rectangular diffuser]

CAEN VME DAQ

- Permanent recording of MCP pulse height (at a highly prescaled rate) \rightarrow integrated anode charge (IAC)
- Determine gain + DCR before and after QE measurement
- \bullet Q.E. measurements
	- Same setups as in normal QE scans (λ and xy-position)
	- Every 4-6 weeks: wavelength scan
	- Every 3-4 months: complete surface scan at 372 nm

Albert Lehmann

Results with ALD-coated MCP-PMTs

- Expected integrated anode charge (IAC) in 10 years PANDA: (at 50% duty-cycle, 20 MHz antiproton-proton average annihilation rate, 10^6 sensor gain)
	- **~5 C/cm² for PANDA Barrel DIRC and even more for Endcap Disc DIRC**
	- Older MCP-PMTs had >50% QE loss after <200 mC/cm² IAC \rightarrow few months lifetime
	- Aging problem solved by coating the MCP pores with an atomic layer deposition **(ALD)** technique
- IAC >5 C/cm² for most ALD MCP-PMTs
	- **Confirmed by other measurements**
- Lifetime of best MCP-PMTs with ALD coating
	- **38 C/cm²** for Photonis 9001393 with 2 ALD layers
	- **Increase by factor ~200 compared to 2011 !**
	- Latest Photonis (2 ALD layers) at \sim 8 C/cm²
	- Photek A2200606 (1 ALD) at ~4 C/cm² → QE loss

Signature of Vacuum Microleaks

- QE xy-scans same as in homogeneity tests
- Within typically months the tubes loose QE starting somewhere at a corner or the rim
	- Already after PMT delivery a lower QE is visible in one of more small spots
	- QE loss starts growing from these spots
	- **Finally spreads across whole PC**
	- Obviously QE does not vanish completely
- Examples of PC aging without illumination:
	- Some of the first Hamamatsu 2-inch MCP-PMTs
	- **The first Photek 2-inch tubes we received**
	- Two of the most recent Photonis MCP-PMTs (reason was a broken brazing furnace)
- A bit worrisome: we have observed this in one tube that was good for \sim 2 years
	- after B-field tests: caused by handling or B-forces?

DIRICH/TRB3 DAQ

• FPGA based DAQ: TRB3, DiRICH, 4 PMTs/backplane

- Developed at GSI for HADES and CBM
- 32 chan. DIRICH FEE boards: amplification, discrimination, TDC, ToT
- 256 chan. TRB3: distribution of trigger signals and accumulation of data
- Power supply and data concentrator card at each backplane
- \bullet < 20 ps RMS; 700 kHz max. trigger rate

Albert Lehmann

DiRICH/TRB3 DAQ-system:

A. Neiser et al., JINST 8 (2013) C12043 C. Ugur et al., JINST 11 (2016) C01046 J. Michel et al., JINST 12 (2017) C01072 A. Rost et al., JINST 12 (2017) C02047 The TRB3 website: http://trb.gsi.de

DIRICH

eRD110 Meeting -- October 12, 2023

PMT Quality Control Scans with DiRICH/TRB3

Automated quality control measurements for series production Barrel DIRC MCP-PMTs

Measure **time delay** between laser pulse and pixel response For easier analysis laser peak shifted to 100 ns for all channels

- **Each channel: permanently recording time and time**over-threshold (ToT) information of all hits above a freely selectable threshold
- Record all hits for each pixel within a certain time window (e.g., -10 to +1 µs) around PiLas trigger
- xy-scans ($\frac{1}{2}$ 1 mm steps): information per channel
	- x-, y-position, hit time, ToT, number of hits
	- **Time resolution** (TTS and RMS) per anode pixel
- 3D-info (x,y,t) allows access to higher level information
	- **Darkcount** xy-distributions
	- Charge sharing (and electronic) **crosstalk** behavior
	- **Recoil electron** distributions (position and time)
	- **Afterpulse** distributions → TOF of feedback ions

Information from DiRICH/TRB3 Scans

Albert Lehmann eRD110 Meeting -- October 12, 2023 **17**

 \overrightarrow{F}

 \overrightarrow{E}

Example Results of xy-Scans with DiRICH/TRB

!! All results obtained with **one single xy-scan** of ~21 hours (½ mm steps; 13689 measured positions) !!

Determination of Electronic Crosstalk

Only one pixel (x4-y4) illuminated

- **TRB position scans may be used to quantify** electronic cross talk
	- Take data where only one pixel was illuminated (here $2.5x2.5$ mm² of pixel $x4-y4$)
	- Determine fraction of detected hits (dark count corrected) in every pixel normalized to x4-y4
	- Adjacent pixels to x4-y4 are also populated with recoil and afterpulse hits
	- After DCR correction pixels in second (and further) rows should contain mainly electronic crosstalk hits

Crosstalk maps and time distributions

- **Electronic crosstalk across the whole active PMT** area is typically ~1% or lower
- Depends on MCP-PMT and HV divider configuration
- Analyzes show that afterpulse hits (high amplitude) create much more electronic crosstalk
- Time distributions may show "funny" structures

Electron Focusing inside Magnetic Fields

Photonis 9002224 (8x8 px): x-scan (50 μm steps) of 4 pix read out by TRB DAQ → less **charge sharing crosstalk**

Photonis 946P541 (100x3 px): x-scan (25 μm steps) to test space and time distributions of **recoil hits** with TRB DAQ

Crosstalk between anode pixels

- Better defined pixel position already at $B = 0.1$ T
- Fewer charge sharing crosstalk (electrons focused)
- Distribution of recoil electrons
	- Spatial spread shrinks with increasing B-field
	- Slope of time distribution unaffected

Comparison of Photek and Photonis PMTs

