
Track Fitting and Vertexing 
EDM

Joe Osborn

BNL


October 11, 2023

1



Overview

• Some discussion last week about the output collection from the fitter


• Issue - currently 3 outputs from the fitter, all of which contain (effectively) 
the same information


• Has downstream implications for all other reconstruction algorithms using 
tracks (electron finder, PID, vertexing…)


• Will propose a solution for the fitting output, and then a corresponding 
design for the vertexing EDM

2



CKF Output
• Current output:


1. edm4eic::TrajectoryCollection - contains all track states 


2. edm4eic::TrackParametersCollection - contains track parameters at the 
target surface


3. std::vector<ActsExamples::Trajectories> - An Acts EDM object which 
packages parameters and states for use by other Acts algorithms


1. Note: Acts development team moving away from this object


• Proposal:


• Single output of edm4eic::TrackCollection


• This will contain the track parameters at the target surface, all track 
states and associated hits (eventually, measurements), and a vertex 
association


• Missing a field for track position at target surface, which should be 
added


• Additional fields from edm4eic::Trajectory can be added, e.g. nStates, 
nOutliers etc. (these are inspired from the Acts trajectory object)

3



Advantages/Disadvantages
• Advantages


• Single output container that is defined within our EDM, so we maintain control and are 
not affected by external changes (e.g. Acts updates)


• Contains all track information that will realistically be needed by any downstream 
algorithm or analysis


• Disadvantages


• Have to use additional CPU time to swap in between edm4eic and Acts::EDM for other 
tracking algorithms (e.g. vertexing, track projections, whatever else comes along)


• Ultimately a small price to pay to insulate ourselves from external changes

4



Vertex EDM

• Current vertex object is missing several notable fields


• Missing time covariance, primary is not clear in streaming context (what is “the” PV?), should have 
relations to many tracks (not a single particle), missing NDF of vertex fit

5



Vertex EDM

• There is also currently no truth vertex object, or any robust way to do 
vertex evaluation


• This will become a critical issue when doing studies with backgrounds, 
where (e.g.) one may have many truth vertices in a single time frame 
that could be evaluated


• Robust vertex evaluation will be a longer term task

6



Proposal for Reco Vertex Object

• Contains a complete 4D position and covariance


• Contains relations to reconstructed tracks, which is what the CKF will point to (from slide 
3)


• Contains chi2/ndf to evaluate goodness of vertex fit

7



Proposal for Truth Vertex Object

• Generated vertices are the vertices from final state particles, not MCVertex which is going to be overkill 
for our purposes


• Only require a 3+1 position+time and a type to identify the vertex


• Note - relation to ReconstructedParticle because currently in our reconstruction a 
ReconstructedParticleCollection is filled with the actual final state generated particles. See this algorithm


• Some discussion about whether or not an edm4eic::Vertex object could be used as a GeneratedVertex 
object. However, we need a truth vertex to point back to truth particles, not edm4eic::tracks

8

https://github.com/eic/EICrecon/blob/main/src/algorithms/reco/MC2SmearedParticle.cc


To-Do List
• Change CKF output collection to edm4eic::TrackCollection. This will have 

downstream implications for all other algorithms that use tracks


• Introduce new Vertex and GeneratedVertex objects


• Alter vertexing algorithm to use this new object


• Write a MC algorithm to fill GeneratedVertexCollection and output with 
PODIO


• Need an algorithm to relate reconstructed to generated vertices

9


