Thesis Overview Talk

Joseph Bertaux

Purdue University

November 10, 2023

Joseph Bertaux (Purdue University)

Thesis Overview Talk

• Analyze Λ_c production in *pp* collisions

• Analyze Λ_c production in *pp* collisions

• Using the $\Lambda_c^+ \to p K^- \pi^+$ decay chain

• Analyze Λ_c production in *pp* collisions

- Using the $\Lambda_c^+ \to p K^- \pi^+$ decay chain
- Approximately 6.23 \pm 0.33% of Λ_c^+ decays use this chain [3], it is the most likely decay mode

- Analyze Λ_c production in *pp* collisions
 - Using the $\Lambda_c^+
 ightarrow p K^- \pi^+$ decay chain
 - Approximately 6.23 \pm 0.33% of Λ_c^+ decays use this chain [3], it is the most likely decay mode
- Compare with D^0 production in similar collisions

$$\frac{\Lambda_c^+ + \Lambda_c^-}{D^0 + \bar{D^0}} \tag{1}$$

- Analyze Λ_c production in *pp* collisions
 - Using the $\Lambda_c^+
 ightarrow p K^- \pi^+$ decay chain
 - Approximately 6.23 \pm 0.33% of Λ_c^+ decays use this chain [3], it is the most likely decay mode
- Compare with D^0 production in similar collisions

$$\frac{\Lambda_c^+ + \Lambda_c^-}{D^0 + \bar{D^0}} \tag{1}$$

• In particular, as a function of p_T and centrality

- A common goal in particle physics is to study QGP (Quark-Gluon Plasma)
 - Due to color-confinement, nothing with non-zero color charge can propagate as a free particle

- Due to color-confinement, nothing with non-zero color charge can propagate as a free particle
 - The force between two quarks is modeled by exchange of virtual gluons

- Due to color-confinement, nothing with non-zero color charge can propagate as a free particle
 - The force between two quarks is modeled by exchange of virtual gluons
 - The exchange force is distance-independent,

- Due to color-confinement, nothing with non-zero color charge can propagate as a free particle
 - The force between two quarks is modeled by exchange of virtual gluons
 - The exchange force is distance-independent,
 - So the potential increases linearly with distance, for example

$$V(r) \sim \kappa r$$
 (2)

- Due to color-confinement, nothing with non-zero color charge can propagate as a free particle
 - The force between two quarks is modeled by exchange of virtual gluons
 - The exchange force is distance-independent,
 - So the potential increases linearly with distance, for example

$$V(r) \sim \kappa r$$
 (2)

• This is why we don't observe free quarks [4]

Figure: Sketch of qq and gluon-gluon interaction [4] (Fig. 10.6)

Figure: Sketch of qq and gluon-gluon interaction [4] (Fig. 10.6)

• However, with more quarks, gluon exchange is not constrained to a long, 1D tube

Figure: Sketch of qq and gluon-gluon interaction [4] (Fig. 10.6)

- However, with more quarks, gluon exchange is not constrained to a long, 1D tube
 - (I say 1D, since normalizing by a surface of radius *r* does nothing-contrast with inverse-square interactions such as Gauss' law)

Figure: Sketch of qq and gluon-gluon interaction [4] (Fig. 10.6)

- However, with more quarks, gluon exchange is not constrained to a long, 1D tube
 - (I say 1D, since normalizing by a surface of radius *r* does nothing-contrast with inverse-square interactions such as Gauss' law)
- But can be further mediated by intermediate quarks; a large system can find low(er) energy configurations of gluon exchange

Joseph Bertaux (Purdue University)

Thesis Overview Talk

• Studying the production of hadrons gives insight into the hadronization process of heavy quarks

- Studying the production of hadrons gives insight into the hadronization process of heavy quarks
 - Specifically, production of the Λ_c baryon against the D^0 meson give the c quark fragmentation ratio $(c \rightarrow \Lambda_c)/(c \rightarrow D^0)$

- Studying the production of hadrons gives insight into the hadronization process of heavy quarks
 - Specifically, production of the Λ_c baryon against the D^0 meson give the c quark fragmentation ratio $(c \to \Lambda_c)/(c \to D^0)$
- First measurements of Λ_c production at $\sqrt{s} = 200$ GeV by STAR show Λ_c/D_0 production is higher than PYTHIA 8.2 predicts [1]

$$1.08 \pm 0.16(\text{stat.}) \pm 0.26(\text{sys}).$$
 (3)

- Studying the production of hadrons gives insight into the hadronization process of heavy quarks
 - Specifically, production of the Λ_c baryon against the D^0 meson give the c quark fragmentation ratio $(c \to \Lambda_c)/(c \to D^0)$
- First measurements of Λ_c production at $\sqrt{s} = 200$ GeV by STAR show Λ_c/D_0 production is higher than PYTHIA 8.2 predicts [1]

$$1.08 \pm 0.16(\text{stat.}) \pm 0.26(\text{sys}).$$
 (3)

• At 3.1 σ without CR (Color Reconnection)

- Studying the production of hadrons gives insight into the hadronization process of heavy quarks
 - Specifically, production of the Λ_c baryon against the D^0 meson give the c quark fragmentation ratio $(c \to \Lambda_c)/(c \to D^0)$
- First measurements of Λ_c production at $\sqrt{s} = 200$ GeV by STAR show Λ_c/D_0 production is higher than PYTHIA 8.2 predicts [1]

$$1.08 \pm 0.16(\text{stat.}) \pm 0.26(\text{sys}).$$
 (3)

- At 3.1 σ without CR (Color Reconnection)
- At 2.1σ with CR

- Studying the production of hadrons gives insight into the hadronization process of heavy quarks
 - Specifically, production of the Λ_c baryon against the D^0 meson give the c quark fragmentation ratio $(c \to \Lambda_c)/(c \to D^0)$
- First measurements of Λ_c production at $\sqrt{s} = 200$ GeV by STAR show Λ_c/D_0 production is higher than PYTHIA 8.2 predicts [1]

$$1.08 \pm 0.16(\text{stat.}) \pm 0.26(\text{sys}).$$
 (3)

- At 3.1 σ without CR (Color Reconnection)
- At 2.1σ with CR
- Because the measurement is different than the prediction, it's important to study

Results star

Figure: (Top) The Λ_c/D^0 ratio as a function of p_T , compared to other hadronization ratios. (Bottom) Same ratio vs different analytic models [1]

Figure: The Λ_c recombination mass spectrum as total mass of $pK\pi$ candidates in 0 – 20% centrality (Top) and 10 – 80% centrality (Bottom) [1] Results _{смs}

Figure: Λ_c/D^0 ratio in *pp* as a function of p_T , compared to PYTHIA with CR2 [2]

Figure: Λ_c/D^0 ratio in PbPb as a function of p_T [2]

$$\frac{\mathsf{d} \ \sigma_{pp}^{\Lambda_c}}{\mathsf{d} \ p_T}$$

(4)

$$\frac{d \sigma_{pp}^{\Lambda_c}}{d p_T} \tag{4}$$

• And using this as a normalization against production in PbPb

$$\frac{1}{\langle T_{\text{PbPb}} \rangle} \frac{d N_{\text{PbPb}}^{\Lambda_c}}{d p_T}$$
(5)

where $\langle T_{PbPb} \rangle$ is the mean nuclear overlap function

$$\frac{\mathrm{d} \sigma_{\rho\rho}^{\Lambda_c}}{\mathrm{d} \rho_T} \tag{4}$$

• And using this as a normalization against production in PbPb

$$\frac{1}{\langle T_{\text{PbPb}} \rangle} \frac{\text{d } N_{\text{PbPb}}^{\Lambda_c}}{\text{d } p_T}$$

where $\langle T_{PbPb} \rangle$ is the mean nuclear overlap function • This is $\langle N_{coll} \rangle$ divided by the *pp* inelastic cross section (5)

$$\frac{d}{d} \frac{\sigma_{\rho\rho}^{\Lambda_c}}{\rho_T} \tag{4}$$

• And using this as a normalization against production in PbPb

$$\frac{1}{\langle T_{\text{PbPb}} \rangle} \frac{d N_{\text{PbPb}}^{\Lambda_c}}{d p_T}$$
(5)

where $\langle T_{PbPb} \rangle$ is the mean nuclear overlap function

- This is $\langle \textit{N}_{\rm COII} \rangle$ divided by the pp inelastic cross section
- It is a normalization factor, since there are more partons involved in PbPb than in *pp*

Joseph Bertaux (Purdue University)

$$R_{\mathsf{PbPb}}^{\Lambda_c}(p_T) = \frac{1}{\langle T_{\mathsf{PbPb}} \rangle} \frac{\mathsf{d} \ N_{\mathsf{PbPb}}^{\Lambda_c}}{\mathsf{d} \ p_T} / \frac{\mathsf{d} \ \sigma_{pp}^{\Lambda_c}}{\mathsf{d} \ p_T}$$
(6)

$$R_{\mathsf{PbPb}}^{\Lambda_c}(p_T) = \frac{1}{\langle T_{\mathsf{PbPb}} \rangle} \frac{\mathsf{d} \ N_{\mathsf{PbPb}}^{\Lambda_c}}{\mathsf{d} \ p_T} / \frac{\mathsf{d} \ \sigma_{pp}^{\Lambda_c}}{\mathsf{d} \ p_T}$$
(6)

 In general, you can define an R^C_{AB} for C production from collisions of species A, B

$$R_{\mathsf{PbPb}}^{\Lambda_c}(p_T) = \frac{1}{\langle T_{\mathsf{PbPb}} \rangle} \frac{\mathsf{d} \ N_{\mathsf{PbPb}}^{\Lambda_c}}{\mathsf{d} \ p_T} / \frac{\mathsf{d} \ \sigma_{pp}^{\Lambda_c}}{\mathsf{d} \ p_T}$$
(6)

- In general, you can define an R^C_{AB} for C production from collisions of species A, B
 - Most notations do not specify the production particle as a superscript;
 I do so on only this slide for emphasis

$$R_{\mathsf{PbPb}}^{\Lambda_c}(\rho_T) = \frac{1}{\langle T_{\mathsf{PbPb}} \rangle} \frac{\mathsf{d} \ N_{\mathsf{PbPb}}^{\Lambda_c}}{\mathsf{d} \ \rho_T} / \frac{\mathsf{d} \ \sigma_{pp}^{\Lambda_c}}{\mathsf{d} \ \rho_T}$$
(6)

- In general, you can define an R^C_{AB} for C production from collisions of species A, B
 - Most notations do not specify the production particle as a superscript;
 I do so on only this slide for emphasis
- This gives the suppression factor in particle production (Λ_c) for atom-atom collisions (PbPb), relative to its production in *pp*.

Figure: R_{PbPb} as a function of p_T for different centrality bins [2]

• R_{PbPb} for prompt Λ_c is shown to the left

Figure: R_{PbPb} as a function of p_T for different centrality bins [2]

- R_{PbPb} for prompt Λ_c is shown to the left
- The general shape is difficult to comment on, but...

Figure: R_{PbPb} as a function of p_T for different centrality bins [2]

- R_{PbPb} for prompt Λ_c is shown to the left
- The general shape is difficult to comment on, but...
- We might expect less central collisions to more closely imitate *pp* collisions

Figure: R_{PbPb} as a function of p_T for different centrality bins [2]

- R_{PbPb} for prompt Λ_c is shown to the left
- The general shape is difficult to comment on, but...
- We might expect less central collisions to more closely imitate *pp* collisions
- This is in fact what we see:

Figure: R_{PbPb} as a function of p_T for different centrality bins [2]

- R_{PbPb} for prompt Λ_c is shown to the left
- The general shape is difficult to comment on, but...
- We might expect less central collisions to more closely imitate *pp* collisions
- This is in fact what we see:
 - The 50 90% least central collisions are closest to 1 for almost any p_T

Results _{смs}

Figure: R_{PbPb} as a function of p_T for different centrality bins [2]

- R_{PbPb} for prompt Λ_c is shown to the left
- The general shape is difficult to comment on, but...
- We might expect less central collisions to more closely imitate *pp* collisions
- This is in fact what we see:
 - The 50 90% least central collisions are closest to 1 for almost any p_T
 - The 0 10% most central collisions have the largest suppression effect

• Analyze Λ_c production in pp collisions and compare with D^0 production; compute as function of p_T and centrality

- Analyze Λ_c production in pp collisions and compare with D^0 production; compute as function of p_T and centrality
 - Gives charm quark hadronization as function of centrality

- Analyze Λ_c production in *pp* collisions and compare with D^0 production; compute as function of p_T and centrality
 - Gives charm quark hadronization as function of centrality
- Understanding hadronization gives insight into the nature of deconfinement in QGP

- Analyze Λ_c production in *pp* collisions and compare with D^0 production; compute as function of p_T and centrality
 - Gives charm quark hadronization as function of centrality
- Understanding hadronization gives insight into the nature of deconfinement in QGP
- Understanding deconfinement in QGP allows to understand QCD and conditions of the early universe

- [1] STAR Collaboration, (2020), arXiv:1910.14628 [nucl-ex]
- [2] CMS Collaboration, (2023), arXiv:2307.11186 [nucl-ex]
- [3] Particle Data Group, *Particle Physics Booklet*, (2018).
- [4] Thomson, Mark, *Modern Particle Physics*, Cambridge University Press, (2013).

Standard Model of Elementary Particles

Figure: Standard model of particles. Image source: https://en.wikipedia.org/wiki/File: Standard_Model_of_Elementary_Particles.svg