
早, Fun4All!
Fun4All Tutorial Part-II

G. Nukazuka (RIKEN/RBRC)

Nǐ zǎo

你好: Hello
你早: Good morning

sPHENIX INTT Analysis Workshop,
November 15th, 2023

National Central University, Taiwai

• We started from the minimum sample Fun4All_minimum.C. We ran it.

• We generated our own analysis module by using CreateSubsysRecoModule.pl.

• We compiled and installed the analysis module.

• We modified LD_LIBRARY_PATH and ROOT_INCLUDE_PATH 

by using /opt/sphenix/core/bin/sphenix_setup.sh

• We ran the sample macro Fun4All_minimum_2.C.

What’s next? Analysis?

Before staring data analysis, let’s input a DST file.

What we did yesterday

I couldn’t run with a DST input
somehow. Let’s move to MC event.

Implementation of your analysis module
ref: sample_module_2/tutorial.h, .cc

Implementation of your analysis module
ref: Fun4All_minimum_3.C

Please use
G4Setup_sPHENIX.C.

The amount of code in Fun4All_minimum_3.C is drastically
changed from _2.C (44 → 381 lines). That’s because

• Configuration of event generator

• Geometry configuration

Let’s check them.

Practical example2: MC, Event generator

Event generators:

• GUN: A particle gun to shoot particles as you want

• SIMPLE: A particle gun with some realistic kinematics?

• Pythia6: General event generator

• Pythia8: General event generator

• DZERO: D0 generator

• LAMBDAC: Λc generator (not ready)

• UPSILON: Υ generator

• HEPMC: ?

Configuration for GUN generator

Practical example2: MC, Event generator

Event generators:

• GUN: A particle gun to shoot particles as you want

Configuration for GUN generator

Practical example2: MC, Event generator

Event generators:

• Pythia8: General event generator

Configuration for Pythia8 generator

The real configuration is done through a text file.
You need to generate libPHPythia8.so by
yourself (maybe) by compiling files in
generators/PHPythia8 in the sPHENIX
coresoftware repository.

The default configuration file:
/cvmfs/sphenix.sdcc.bnl.gov/gcc-12.1.0/release/
release_ana/ana/*/share/calibrations/Generators/
phpythia8.cfg

https://github.com/sPHENIX-Collaboration/coresoftware/tree/master/generators/PHPythia8

Practical example2: MC, Geometry

I’m not quite sure what is really needed for the geometry configuration.
Probably,

enabling detectors by assigning true to the
variables in the Enable namespace (defined in
multiple files, maybe files in common of the
sPHENIX macros repository) is necessary.

Practical example2: MC, Geometry

I’m not quite sure what is really needed for the geometry configuration.
Probably,

enabling detectors by assigning true to the
variables in the Enable namespace (defined in
multiple files, maybe files in common of the
sPHENIX macros repository) is necessary.

Practical example2: MC, Detector behavior

The detector behavior such as clustering, needs to be enabled.

enabling detectors by assigning true to the
variables in the Enable namespace (defined in
multiple files, maybe files in common of the
sPHENIX macros repository) is necessary.

Practical example2: MC, Detector behavior

Let’s run Fun4All_minimum_3.C.

HANDS ON!

Comment
them out

Please use
G4Setup_sPHENIX.C.

export ROOT_INCLUDE_PATH=/sphenix/tg/tg01/commissioning/INTT/repositories/macros/detectors/sPHENIX:${ROOT_INCLUDE_PATH}

If you see such an error, modify
ROOT_INCLUDE_PATH.

Practical example2: MC, Analysis module

Let’s change your analysis module for MC data analysis.

Some headers were added.

ref: sample_module_3/tutorial.h

A function to set the output
path was added.

The output path.

TFile* object for output.

TH1D* object to contain
the analysis results

Practical example2: MC, Analysis module

Let’s change your analysis module for MC data analysis.
ref: sample_module_3/tutorial.cc

Initialization of the ROOT objects.

Opening output ROOT file
Making a histogram

http://tutorial.cc

Practical example2: MC, Analysis module

Let’s change your analysis module for MC data analysis.
ref: sample_module_3/tutorial.cc

TRKR_CLUSTER node is obtained
to access TrkrCluster.

If TRKR_CLUSTER node is
not found, nothing is done.

The same steps but for ActsGeometry
node. It’s necessary (?) to convert
TrkrCluster coordinate (local coordinate
in the detector) to the global coordinate
(sPHENIX lab frame)

http://tutorial.cc

Practical example2: MC, Analysis module

Let’s change your analysis module for MC data analysis.
ref: sample_module_3/tutorial.cc

for(loop over INTT layers){
for(loop over hit set){
for(loop over iterator of the hit set){
/* processes cluster by cluster */
/* filling the histogram */

}
}

}

http://tutorial.cc

Practical example2: MC, Analysis module

Let’s change your analysis module for MC data analysis.
ref: sample_module_3/tutorial.cc

Filling the number of clusters
on INTT to the histogram

Printing the cluster
information on your terminal

http://tutorial.cc

Practical example2: MC, Analysis module

Let’s change your analysis module for MC data analysis.
ref: sample_module_3/tutorial.cc

At the end of a run, the histogram object is
written to the ROOT file. Then the file is closed.

http://tutorial.cc

If you compile your analysis module by $ make , you may see the following error:

Compiling your analysis module
ref: sample_module_2/tutorial.h, .cc

It means that you refer to TrkrClusterContainerv4 in your code, but the compiler is not informed of the
actual implementation of the type (it’s a class in this case). This is because the analysis module generated
by the sPHENIX perl script only uses libphool.so and libSubsysReco.so libraries. You need to add
something else by yourself.

autogen.sh uses Makefile.am to make a Makefile that matches your environment.

Compiling your analysis module: Makefile.am
ref: sample_module_2/tutorial.h, .cc

Makefile.am generated by CreateSubsysRecoModule.pl

← Add it

After changing Makefile.am, you
need to run autogen.sh again.

You need to add -ltrack_io
option, which means linking
libtrack_io.so to the generated
file.

We may need to judge what should be added from the error message:

Compiling your analysis module: How to know a flag to be used?
ref: sample_module_2/tutorial.h, .cc

Makefile.am generated by CreateSubsysRecoModule.pl

After changing Makefile.am, you
need to run autogen.sh again.

How can we do it?

It depends on what you want to do. For example:

1. Replace tutorial.h and tutorial.cc to those 

in sample_module_3 (or copy&pate codes).

2. Check inside tutorial.h/.cc and find the part for

• Open/Close the output ROOT file at the beginning/end of a run

• Store your analysis result in a histogram

3. Modify Makefile.am

4. Execute autogen.sh again, then make and make install 

 $ cd build
 $../autogen.sh —prefix=$PWD/../install
 $ make
 $ make install

5. Run Fun4All_minimum_3.C 
$ root ‘Fun4All_minimum_3.C(10)’

Practical example2: MC, #cluster distribution

HANDS ON!

← Add it

Practical example2: MC, #cluster distribution
Pythia8, pp at 200 GeV

Particle gun, π-  
with p⃗ = (0, 1, 0.1) GeV/c

• People are interested in some commands shown in my slides but not available for
you, such as “tree”. I’ll install them to /sphenix/tg/tg01/commissioning/INTT/
repositories/libraries/bin so that you can use it by adding the path to the
environment variable PATH: 
 $ export PATH= /sphenix/tg/tg01/commissioning/INTT/repositories/libraries/bin:${PATH}
If you are interested in, I can install Emacs29, time (output is human-readable
format), ag (faster than grep).
You can do the same. Let’s make the environment better!

• aaa

Misc

• Learn class inheritance in C++.

• Learn polymorphism.

• Learn the environment variable LD_LIBRARY_PATH

• Understand $ echo $ROOT_INCLUDE_PATH | sed -e "s/:/\n/g" | grep fun4al

• Understand

•

Homework

