
你好, Fun4All!
Part-I

G. Nukazuka (RIKEN/RBRC)

Ni hao

About this talk
This talk presents how to run your analysis codes in the Fun4All
framework. Audiences are asked to download/run/change some codes, so
you need to have a BNL account.

Hands-on Program
1. Downloading the sample codes

2. Checking your environmental variables

3. Running the minimal code (Fun4All_minimum.C)

4. Making/compiling your analysis module

5. Modifying your environmental variables to include your analysis module

6. Modifying and running the sample code (Fun4All_minimum_2.C)

What is Fun4All?
An analysis framework originally developed for the PHENIX experiment

what/who
why
where
when
how

What is Fun4All?
An analysis framework originally developed for the PHENIX experiment

Wikipedia

what/who
why
where
when
how

What is Fun4All?
An analysis framework originally developed for the PHENIX experiment

what/who
why
where
when
how

Why do we use Fun4All?
what/who
why
where
when
how• Fun4All has a successful history.

• Fun4All has useful features.

• Other sPHENIX members use it.

• Only analysis results done with Fun4All can be published from sPHENIX.

Where is Fun4All?
what/who
why
where
when
how• You can find it on GitHub: 

https://github.com/sPHENIX-Collaboration/coresoftware

• You can use it in the SDCC servers.

Steps to set up Fun4All in SDCC
1. Log in to the SDCC gateway machine: 

 $ ssh {username}@ssh.sdcc.bnl.gov

2. Log in to the SDCC servers: 

 $ ssh {username}@sphnx{num}sdcc.bnl.gov

{num}: 01 — 08

3. Execute the setting shell script: 
 $ source /opt/sphenix/core/bin/sphenix_setup.sh

https://github.com/sPHENIX-Collaboration/coresoftware

When should we start using Fun4All?
what/who
why
where
when
how• In the test bench, we use FEM/FEM-IB system for INTT operation. 

It writes results to a TTree. So we just need ROOT.

• In the commissioning, we got evt files from RCDAQ. Our decoder generated

ROOT files containing a TTree. Only ROOT is necessary for the analysis.

• The sPHENIX decoder, which will be released in a perfect performance soon,

reads evt files and outputs DST files (other formats are possible technically).

Now is a good time to migrate from ROOT to Fun4All.

How?
what/who
why
where
when
howThis is the question!

Why is Fun4All difficult?

Why is Fun4All difficult?

You need
a variety of knowledge 

and experience

C++

Static
library

automake
configure

sPHENIX
scripts

ROOT
macro

Compiling
make Fun4All

Linux

Git
GitHub

Finding
information

What can we start with?
A minimum program is good to start with.

In the case of C++:

What can we start with?
A minimum program is good to start with.

In the case of C++:

In the case of a ROOT macro:

It’s useless, I know.

It’s also useless.

What can we start with?
In the case of Fun4All:

terminal

Fun4All_minimum.C
This is a ROOT macro.

What can we start with?

You can get the sample codes: https://github.com/nukazuka/INTT_Fun4All_Tutorial

Get them by

 $ git clone git@github.com:nukazuka/INTT_Fun4All_Tutorial.git

in any directory

HANDS ON! #1

https://github.com/nukazuka/INTT_Fun4All_Tutorial

What can we start with?

Fun4All_minimum.C
This is a ROOT macro.

Let’s see the sample code
line by line.

What can we start with?

include statement to include fun4all/Fun4Allserver.h

To find the file

1. Check the environment variable ROOT_INCLUDE_PATH: 
 $ echo $ROOT_INCLUDE_PATH

It’s not human-readable. Paths are separated by “:”. Let’s make it better.

You need to execute a shell script provided by
sPHENIX to set up analysis environment:
 $ source /opt/sphenix/core/bin/sphenix_setup.sh

What can we start with?

include statement to include fun4all/Fun4Allserver.h

To find the file

1. Check the environment variable ROOT_INCLUDE_PATH: 
 $ echo $ROOT_INCLUDE_PATH

2. To separate the paths: Log in to the SDCC servers: 
 $ echo $ROOT_INCLUDE_PATH | sed -e “s/:/\n/g”

sed command replaces : to \n.

Much better! Let’s find paths which have a certain word.

What can we start with?

include statement to include fun4all/Fun4Allserver.h

To find the file

1. Check the environment variable ROOT_INCLUDE_PATH: 
 $ echo $ROOT_INCLUDE_PATH

2. To separate the paths: Log in to the SDCC servers: 
 $ echo $ROOT_INCLUDE_PATH | sed -e “s/:/\n/g”

sed command replaces : to \n.

3. Select paths which contain fun4all 
 $ echo $ROOT_INCLUDE_PATH | sed -e "s/:/\n/g" | grep fun4all

← this one!

What can we start with?

include statement to include fun4all/Fun4Allserver.h

To find the file

1. Check the environment variable ROOT_INCLUDE_PATH: 
 $ echo $ROOT_INCLUDE_PATH

2. To separate the paths: Log in to the SDCC servers: 
 $ echo $ROOT_INCLUDE_PATH | sed -e “s/:/\n/g”

sed command replaces : to \n.

3. Select paths which contain fun4all 
 $ echo $ROOT_INCLUDE_PATH | sed -e "s/:/\n/g" | grep fun4all

4. Confirmation 
 $ ls /cvmfs/sphenix.sdcc.bnl.gov/gcc-12.1.0/release/release_ana/ana.382/include/fun4all/Fun4AllServer.h

HANDS ON! #2

Try them

Note: The path depends on your environment

What can we start with?

R__LOAD_LIBRARY is a function-like macro defined in ROOT to load a library.

A shared library libfun4all.so is loaded. Where is it?

1. Check the environment variable LD_LIBRARY_PATH: 
 $ echo $LD_LIBRARY_PATH

It’s not human-readable again. Let’s do the same.

Rtypes.h

Learn C language more if you don’t know.

What can we start with?

R__LOAD_LIBRARY is a function-like macro defined in ROOT to load a library.

A shared library libfun4all.so is loaded. Where is it?

1. Check the environment variable LD_LIBRARY_PATH: 
 $ echo $LD_LIBRARY_PATH

2. Replce : to \n (or something else you like) 
 $ echo $LD_LIBRARY_PATH | sed -e “s/:/\n/g”

It’s better but still not clear…
Let’s search the file.

Rtypes.h

What can we start with?

R__LOAD_LIBRARY is a function-like macro defined in ROOT to load a library.

A shared library libfun4all.so is loaded. Where is it?

1. Check the environment variable LD_LIBRARY_PATH: 
 $ echo $LD_LIBRARY_PATH

2. Replce : to \n (or something else you like): 
 $ echo $LD_LIBRARY_PATH | sed -e “s/:/\n/g”

3. Search libfun4all.so: 
 $ echo $LD_LIBRARY_PATH | sed -e "s/:/\n/g" | xargs -I {} find {} -name “libfun4all.so"

What can we start with?

R__LOAD_LIBRARY is a function-like macro defined in ROOT to load a library.

A shared library libfun4all.so is loaded. Where is it?

1. Check the environment variable LD_LIBRARY_PATH: 
 $ echo $LD_LIBRARY_PATH

2. Replce : to \n (or something else you like): 
 $ echo $LD_LIBRARY_PATH | sed -e “s/:/\n/g”

3. Search libfun4all.so: 
 $ echo $LD_LIBRARY_PATH | sed -e "s/:/\n/g" | xargs -I {} find {} -name “libfun4all.so"

Another way I could come up:
$ for dir in `echo $LD_LIBRARY_PATH | sed -e "s/:/\n/g"` ; do find $dir -name "libfun4all.so" ; done

HANDS ON!
#2

Try them

What can we start with?

A pointer of an instance of the Fun4AllServer class is assigned to “se”.

Including the header file and
loading the shared library
are for here.

What can we start with?

This super simple macro takes no input file and outputs nothing. 1 event is processed.

Including the header file and
loading the shared library
are for here.

← Running analysis processes for the given number of events.
← Some processes are launched at the end of event-by-event processes.
← Just delete it.

← Just do it.
← Just do it.

What can we start with?

HANDS ON!
#3

Execute Fun4All_minimum.C.

Practical example

This super simple macro takes no input file and outputs nothing. 1 event is processed.

It depends on what you want to do. For example:

• inputting raw file(s)

• inputting DST file(s)

• Monte-Carlo as an input

• running someone’s analysis codes

• running your analysis codes

• Outputting results to DST file(s)

• Outputting results to histograms/TTrees

Practical example

This super simple macro takes no input file and outputs nothing. 1 event is processed.

It depends on what you want to do. For example:

• inputting raw file(s)

• inputting DST file(s)

• Monte-Carlo as an input

• running someone’s analysis codes

• running your analysis codes

• Outputting results to DST file(s)

• Outputting results to histograms/TTrees

Let’s try a simple case.

Practical example

Fun4All_minimum_2.C

You need to write your analysis codes for a certain class. 
The class is called “analysis module”. Analysis modules need to

• inherit the SubsysReco class (class inheritance)

• implement functions in the SubsysReco (polymorphism)

• be registered to Fun4AllServer by Fun4AllServer::registerSubsystem

Analysis module

You need to write your analysis codes for a certain class. 
The class is called “analysis module”. Analysis modules need to

• inherit the SubsysReco class (class inheritance)

• implement functions in the SubsysReco (polymorphism)

• be registered to Fun4AllServer by Fun4AllServer::registerSubsystem

Analysis module

You can learn class inheritance (继承, 継承, 상속) 
and polymorphism (多态, ポリモーフィズム, 다형성)  
in C++ textbooks. It’s not easy to understand them

without taking time to learn.

https://en.wikipedia.org/wiki/Inheritance_(object-oriented_programming)
https://zh.wikipedia.org/wiki/%E7%BB%A7%E6%89%BF_(%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6)
https://ja.wikipedia.org/wiki/%E7%B6%99%E6%89%BF_(%E3%83%97%E3%83%AD%E3%82%B0%E3%83%A9%E3%83%9F%E3%83%B3%E3%82%B0)
https://ko.wikipedia.org/wiki/%EC%83%81%EC%86%8D_(%EA%B0%9D%EC%B2%B4_%EC%A7%80%ED%96%A5_%ED%94%84%EB%A1%9C%EA%B7%B8%EB%9E%98%EB%B0%8D)
https://en.wikipedia.org/wiki/Polymorphism_(computer_science)
https://zh.wikipedia.org/wiki/%E5%A4%9A%E6%80%81_(%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6)
https://ja.wikipedia.org/wiki/%E3%83%9D%E3%83%AA%E3%83%A2%E3%83%BC%E3%83%95%E3%82%A3%E3%82%BA%E3%83%A0
https://ko.wikipedia.org/wiki/%EB%8B%A4%ED%98%95%EC%84%B1_(%EC%BB%B4%ED%93%A8%ED%84%B0_%EA%B3%BC%ED%95%99)

The standard way to implement the class, add it to the ROOT macro, and run it is

1. generating a template by CreateSubsysRecoModule.pl

 $ CreateSubsysRecoModule.pl [name_of_the_module] [options]
Joseph’s minimum example is also a good start.

2. generating the configuration files by autogen.sh

$ autogen.sh --prefix=[install_path]

3. implementing the header file (*.h) and the source file (*.cc) by yourself.

4. compiling the analysis module by make command

 $ make

5. installing the library (*.so) and the header file (*.h)

$ make install

6. setting your LD_LIBRARY_PATH and ROOT_INCLUDE_PATH

(here is a little bit complicated. The explanation is given later.)

7. adding an include statement and R__LOAD_LIBRARY macro to your ROOT macro.

(It’s also given later.)

Analysis module

http://CreateSubsysRecoModule.pl
https://github.com/sPHENIX-Collaboration/INTT/tree/main/general_codes/josephb/InttExampleAna

SybsysReco class Github

The only header is in Fun4All. The actual behavior
of functions should be implemented in your
inheriting class by yourself (polymorphism). The
class itself is not too complicated.

https://github.com/sPHENIX-Collaboration/coresoftware/blob/master/offline/framework/fun4all/SubsysReco.h

SybsysReco/Your analysis module class
The functions to be executed by Fun4AllServer take PHCompositNode* as an argument.
For example: int process_event(PHCompositeNode *)

Github

Init

InitRun

process_event

Reset

End

Run

ROOT

macro

ResetEvent

EndRun

ev
en

t l
oo

p

https://github.com/sPHENIX-Collaboration/coresoftware/blob/master/offline/framework/fun4all/SubsysReco.h

SybsysReco/Your analysis module class
The functions to be executed by Fun4AllServer take PHCompositNode* as an argument.
For example: int process_event(PHCompositeNode *)

Github

Init

InitRun

process_event

Reset

End

Run

ROOT

macro

ResetEvent

EndRun

The main part of your analysis

Preparation for the run. For example, making histograms.

Finalization. Writing histogram objects to output files, etc.

ev
en

t l
oo

p

https://github.com/sPHENIX-Collaboration/coresoftware/blob/master/offline/framework/fun4all/SubsysReco.h

1. Generating a template by CreateSubsysRecoModule.pl

 $ CreateSubsysRecoModule.pl [name_of_the_module] [options]

2. Generating the configuration files by autogen.sh

$ autogen.sh --prefix=[install_path]

Making your own analysis module

The install
directory is arbitral.

4. compiling the analysis module by make

 $ make

To check whether compiling was done successfully: $ echo $?

5. installing the library (*.so) and the header file (*.h)

$ make install

Making your own analysis module

5. installing the library (*.so) and the header file (*.h)

$ make install

Making your own analysis module

You need to inform the path to this directory
to ROOT to use them.

The standard way to implement the class, add it to the ROOT macro, and run it is

1. generating a template by CreateSubsysRecoModule.pl

 $ CreateSubsysRecoModule.pl [name_of_the_module] [options]
Joseph’s minimum example is also a good start.

2. generating the configuration files by autogen.sh

$ autogen.sh --prefix=[install_path]

3. implementing the header file (*.h) and the source file (*.cc) by yourself.

4. compiling the analysis module by make command

 $ make

5. installing the library (*.so) and the header file (*.h)

$ make install

Analysis module

HANDS ON!
#4

Try them

in a new directory.

Give original name to the module.

Any directory is OK.

If you have no preference, make and use

$PWD/install

http://CreateSubsysRecoModule.pl
https://github.com/sPHENIX-Collaboration/INTT/tree/main/general_codes/josephb/InttExampleAna

6. setting your LD_LIBRARY_PATH and ROOT_INCLUDE_PATH

LD_LIBRARY_PATH: an environmental variable generally used in Linux to find libraries

ROOT_INCLUDE_PATH: an environmental variable introduced by ROOT to find header files

The basic setup of them is done by /opt/sphenix/core/bin/sphenix_setup.sh.

Making your own analysis module

Files in the paths in the variables can be used
with only the file name.

Here, sed_path command
is defined by Genki:

6. setting your LD_LIBRARY_PATH and ROOT_INCLUDE_PATH

To add paths to the variables, you can run /opt/sphenix/core/bin/setup_local.sh, for example,

 $ source /opt/sphenix/core/bin/setup_local.sh /sphenix/tg/tg01/commissioning/INTT/work/genki/repos/
coresoftware/simulation/g4simulation/g4intt/install

Making your own analysis module

6. setting your LD_LIBRARY_PATH and ROOT_INCLUDE_PATH

Typing the command every time is trouble. You should write it to ${HOME}/.bashrc, so the
command is executed just after login. For example,

You can add multiple paths as arguments with separation with a space.

To do it in a more user-friendly way, you can use my script:  
/sphenix/tg/tg01/commissioning/INTT/repositories/libraries/intt_setup_v2.sh
An explanation of this script can be found in the backup slide (planned).

Making your own analysis module

7. adding an include statement and R__LOAD_LIBRARY macro to your ROOT macro.

Making your own analysis module

7. adding an include statement and R__LOAD_LIBRARY macro to your ROOT macro. 
and execute it!

Making your own analysis module

6. setting your LD_LIBRARY_PATH and ROOT_INCLUDE_PATH

7. adding an include statement and R__LOAD_LIBRARY macro

to your ROOT macro. Change the ROOT macro
accordingly, then run it!

Analysis module

HANDS ON!
#5, #6

Try

them

Note: The name of the header file and
the class depends on you.

