2nd FLUSH REPORT INTT tracking in pp with SIM

Hinako Tsujibata (Nara Women's University) 2023.11.16 INTT Analysis Workshop@NCU

INTT tracking in pp with SIM

Development of tracking algorithm in pp collision with simulation

Goal in this workshop: Evaluation of my tracking algorithm with the truth information and sPHENIX tracking group

My To-Do List

- Evaluation of my tracking algorithm with the truth track
 - Calculation of the angles (ϕ and θ) of my track
 - Checking the angles of the truth track
 - Comparison of the angles between my track and the truth track
- Evaluation of my tracking algorithm with the track which is made by sPHENIX tracking group
 - Understanding the tracking system of sPHENIX tracking group _
 - Taking the tracking data of sPHENIX tracking group
 - Comparison between my track and the track which is made by sPHENIX tracking group

The angles of the truth track

- The truth angles are taken from PYTHIA.
- ϕ and θ are the angles in the x-y plane and the r-z plane respectively.
- In this study, the final-state particles in $\eta < 2$ are used.

Calculation of the angles of reconstructed track

- The tracks are defined as y = ax + b in x-y plane and r-z plane each. • The angles (ϕ and θ) are calculated as below.

- $\phi = \operatorname{Arctan}(a_{xy})$
- $\theta = \operatorname{Arctan}(a_{rz})$

The angular difference

- all of the truth tracks in one event is calculated.
- The bottom plot shows the difference of 100 events.

Both of distributions have peak.

The angular difference between one angle of reconstructed track and

The angular correlation between truth & reconstructed truck

- But the θ has no correlation.

• The ϕ between the truth and reconstructed track has good correlation.

402326 1.627 1.557 0.8313 0.8144

The ϕ cut

- The ϕ cut which selects only the peaks of the ϕ distribution (ϕ < 0.01) is applied in the θ
- theta[rad] h_theta_corr iruth theta[rad] 5299 Entries 1.627 Mean x 1.602 Mean y Std Dev x 0.8427 0.7364 Std Dev y 0.5 1.5 2.5 track theta[rad]
- The θ distribution has good correlation and θ difference has more stronger peak.

- $\Delta \phi$ vs. $\Delta \theta$ distribution has peak.
- The correct combinations of the the reconstructed track and the truth track is in this peak.

Next step

 After setting the window, I'd like to calculate the ratio of the correct combination in the window.

8

BACK UP

TRACKING METHOD

<Simulation> PYTHIA + GEANT4 (100 events) p + p collision, $\sqrt{s} = 200$ GeV, no magnetic field.

- Selection a cluster A on the inner barrel and a cluster B on the outer barrel.
- Connection them with a line (tracklet).
- 3. Determination the beam spot using tracklets.
- 4. Connection the three points (A, B, beam spot) by the least-squares method (track).

HOW TO GET THE BEAM SPOT4

Unit vector between A and O : \vec{u}

- To find the beam spot, the distance of • closest approach (DCA) between each tracklet and origin was calculated.
 - Calculating DCA_{2D} and DCA_{L} . •

 $DCA_{2D} = \vec{v} \times \vec{u} = \vec{u} \cdot \sin \phi$ $DCA_{L} = \vec{v} \cdot \vec{u} = \vec{u} \cdot \cos \phi$

• Using DCA_I , the DCA position of the tracklet can be calculated.

$$DCA_X = DCA_L \times \vec{u}_x + A_x$$

 $DCA_Y = DCA_L \times \vec{u}_y + A_y$

 $DCA_{Z} = DCA_{L} \times \vec{u}_{z} + A_{z}$

<u>The beam spot is the average of the DCA.</u> •

▶ 7

TRACKLET

 Tracklets are defined as tracklets with angular difference in the X-Y plane between A and B $\Delta \phi < 0.01$ [rad].

<u>Some tracklets share a cluster.</u> Some DCA, s seem to be extremely far from the beam <u>spot.</u>

x-y plane

In this study, only tracklets that DCA_{2D} and DCA_z is within 1 sigma from the

mean are used.

RESULT OF TRACKING

Blue : clusters and tracklets Green : reconstructed tracks

Glay : excluded clusters and tracklets

of tracks

