FLUSH REPORT INTT tracking in pp with SIM

Hinako Tsujibata (Nara Women's University) 2023.11.10 INTT Analysis Workshop@NCU

INTT tracking in pp with SIM

Development of tracking algorithm in pp collision with simulation

Goal in this workshop: Evaluation of my tracking algorithm with the truth information and sPHENIX tracking group

My To-Do List

- Evaluation of my tracking algorithm with the truth track
 - Calculation of the angles (ϕ and θ) of my track
 - Checking the angles of the truth track
 - Comparison of the angles between my track and the truth track
- Evaluation of my tracking algorithm with the track which is made by sPHENIX tracking group
 - Understanding the tracking system of sPHENIX tracking group _
 - Taking the tracking data of sPHENIX tracking group
 - Comparison between my track and the track which is made by sPHENIX tracking group

The angles of the truth track

- The truth angles is taken from PYTHIA.
- ϕ is the angle in the x-y plane.

Calculation of the angles of my track

- The tracks is defined as y = ax + b in x-y plane and r-z plane each.
- The angles (ϕ and θ) is calculated as below.

- $\phi = \operatorname{Arctan}(a_{xy})$
- $\theta = \operatorname{Arctan}(a_{rz})$
 - 3835 1.807

The angular difference

- The angular difference between one angle of my track and all of the truth tracks in one event is calculated.
- The bottom plot shows the difference of 100 events.

 The correct combination of the my track and the truth track is around 0 probably.

Next step

 After setting the window around 0 in x-axis, I'd like to calculate the ratio of the correct combination in the window.

INTT tracking in pp with SIM

Development of tracking algorithm in pp collision with simulation

Goal in this workshop: Evaluation of my tracking algorithm with the truth information and sPHENIX tracking group

My To-Do List

- Evaluation of my tracking algorithm with the truth track
 - Calculation of the angles (ϕ and θ) of my track (ongoing)
 - Checking the angles of the truth track
 - Comparison of the angles between my track and the truth track (ongoing)
- Evaluation of my tracking algorithm with the track which is made by sPHENIX tracking group
 - Understanding the tracking system of sPHENIX tracking group _
 - Taking the tracking data of sPHENIX tracking group
 - Comparison between my track and the track which is made by sPHENIX tracking group

BACK UP

TRACKING METHOD

<Simulation> PYTHIA + GEANT4 (100 events) p + p collision, $\sqrt{s} = 200$ GeV, no magnetic field.

- Selection a cluster A on the inner barrel and a cluster B on the outer barrel.
- Connection them with a line (tracklet).
- 3. Determination the beam spot using tracklets.
- 4. Connection the three points (A, B, beam spot) by the least-squares method (track).

HOW TO GET THE BEAM SPOT4

Unit vector between A and O : \vec{u}

- To find the beam spot, the distance of • closest approach (DCA) between each tracklet and origin was calculated.
 - Calculating DCA_{2D} and DCA_{L} . •

 $DCA_{2D} = \vec{v} \times \vec{u} = \vec{u} \cdot \sin \phi$ $DCA_{L} = \vec{v} \cdot \vec{u} = \vec{u} \cdot \cos \phi$

• Using DCA_I , the DCA position of the tracklet can be calculated.

$$DCA_X = DCA_L \times \vec{u}_x + A_x$$

 $DCA_Y = DCA_L \times \vec{u}_y + A_y$

 $DCA_{Z} = DCA_{L} \times \vec{u}_{z} + A_{z}$

<u>The beam spot is the average of the DCA.</u> •

▶ 7

TRACKLET

 Tracklets are defined as those with angular difference in the X-Y plane between A and B $\Delta \phi < 0.01$ [rad].

<u>Some tracklets share a cluster.</u> Some DCA, s seem to be extremely far from the beam <u>spot.</u>

x-y plane

DCA cut

In this case, only tracklets within 1 sigma from the DCA_{2D} and DCA_7 mean are

used.

RESULT OF TRACKING

Blue : clusters and tracklets Green : reconstructed tracks

Glay : excluded clusters and tracklets

An example of how to add one particular particle specie is given in <u>"How to simulate D mesons"</u> page. Here one can find some additional information on how to choose new particle ID. In fact one should remember for proper transmission of hep id from event generators, that only the hep Id is meaningfull.

The existing list is below:

In rough order of multiplicity: gamma,pi+,pi-,pi0,etc.

22 GAMMA	211 PION +	-211 PION -	111 PION 0	130 KAON 0 LONG
321 KAON +	-321 KAON -	310 KAON 0 SHORT	221 ETA	
2212 PROTON	2112 NEUTRON	-2212 ANTIPROTON	-2112 ANTINEUTRON	-11 ELECTRON
11 POSITRON	-12 NU_E	12 ANTI NU_E	-13 MUON +	13 MUON -
3122 LAMBDA	3222 SIGMA +	3212 SIGMA 0	3112 SIGMA -	3322 XI 0
3312 XI -	3334 OMEGA -			
-3122 ANTILAMBDA	-3222 ANTISIGMA -	-3212 ANTISIGMA 0	-3112 ANTISIGMA +	-3322 ANTIXI 0
-3312 ANTIXI +	-3334 ANTIOMEGA +			
-15 TAU+	15 TAU-	441 D+	-441 D-	421 D0
-421 ANTID0	431 DS+	-431 DS-		
24 W+	-24 W-	23 Z0	-14 NU_M	14 ANTINU_M
-16 NU_T	16 ANTINU_T	71 GEANT	72 GEANT	75 GEANT
700201 DEUTERON	700301 TRITON	700202 ALPHA	700302 HE3	

It's been agreed some tome ago to use 700000+A*100+Z for atoms, but apart from this there is no conventions. It is recommended to use something which is consistent with PYTHIA manual. For example it has pdg codes 80-100 reserved for "non-standard" particles or whatever you find logical. Once a pdg code is selected, one have to put it in local copy of gstar_part.g with a geant code and decay table.

🔒 star.bnl.gov	S =	⊕ Ĥ + Ĥ
s://indico.bnl.gov/event/20852/co	๛ MT - ファイル - Nextcloud	https://www.star.bnl.gov/public/comp/

Particle Data Group IDs