sPHENIX INTT mini-Workshop National Central University 2023/11/17

Fixed-target charmonium production and pion PDFs

Wen-Chen Chang 章文箴 Institute of Physics, Academia Sinica

In collaboration with Chia-Yu Hsieh, Yu-Shiang Lian, Jen-Chieh Peng, Stephane Platchkov and Takahiro Sawada

Predictions for the sPHENIX physics program [arXiv:2305.15491]

Figure 22: Predictions for the R_{AA} vs N_{part} of $\Upsilon(1S)$ (left) and $\Upsilon(2S)$ (right) in sPHENIX at RHIC, showing the cold nuclear matter (orange) and thermal (green) contributions to the total R_{AA} (blue).

- Transversely polarized p+p and p+Au running in 2024
- High-statistics Au+Au running in 2025

Cold Nuclear Matter Effects of Quarkonium Production

- Initial-state effect: shadowing, parton densities (esp. gluon) of nuclear PDFs (nPDFs)
- Production mechanism: CEM, CSM and NRQCD
- Initial-state interaction: parton energy loss
- Final-sate interaction: absorption and regeneration

https://journals.aps.org/prc/abstract/10.1103/PhysRevC.61.035203 https://journals.aps.org/prc/abstract/10.1103/PhysRevC.81.044903

LO & NLO Diagrams of $c\bar{c}$ **Production**

LO

A. Petrelli et al. /Nuclear Physics B 514 (1998) 245-309

....

 D_0

qq

A. Petrelli et al. / Nuclear Physics B 514 (1998) 245-309

NLO

Fig. 8. Diagrams for the real corrections to the $q\bar{q}$ channels. Permutations of outgoing gluons and/or reversal of fermion lines are always implied.

Color Evaporation Model

LO/NLO calculations of $\hat{\sigma}[ij \rightarrow c\bar{c}X]$:

- P.Nason, S. Dawson and R.K. Ellis, Nucl. Phys. B303 (1988) 607
- M.L. Mangano, P. Nason and G. Ridolfi, Nucl. Phys. B405 (1993)507

https://agenda.infn.it/event/20446/contributions/124767/attachments/76906/99037/PietroFaccioli Trieste2020.pdf

NRQCD

The "cascade" (factorization) approach of NRQCD

https://agenda.infn.it/event/20446/contributions/124767/attachments/76906/99037/PietroFaccioli Trieste2020.pdf

NRQCD The "cascade" (*factorization*) approach of NRQCD

Charmonium Spectroscopy

https://arxiv.org/abs/1509.07212

Long-Distance Matrix Elements (LDMEs) PRD 54, 2005 (1996) $\langle O_{1,8}^{H}[^{2S+1}L_{J}] \rangle$

H	q ar q	GG	qG
$J/\psi,\psi(2S)$	$\langle \mathcal{O}_8^H[^3S_1] \rangle \ (\mathcal{O}(\alpha_s^2))$	$\Delta_8^{H*} \left(\mathcal{O}(\alpha_s^2) \right)$	
		$\langle \mathcal{O}_1^H[{}^3S_1] \rangle \ (\mathcal{O}(\alpha_s^3))$	
χ_{c0}	$\langle \mathcal{O}_8^H[^3S_1] \rangle \left(\mathcal{O}(\alpha_s^2) \right)$	$\langle \mathcal{O}_1^H[^3P_0]\rangle \left(\mathcal{O}(\alpha_s^2)\right)$	
χ_{c1}	$\langle \mathcal{O}_8^H[^3S_1] \rangle \ (\mathcal{O}(\alpha_s^2))$	$\langle \mathcal{O}_1^H[^3P_1] \rangle \ (\mathcal{O}(\alpha_s^3))$	$\langle \mathcal{O}_1^H[^3P_1] \rangle \ (\mathcal{O}(\alpha_s^3))$
χ_{c2}	$\langle \mathcal{O}_8^H[^3S_1] \rangle \ \left(\mathcal{O}(\alpha_s^2) \right)$	$\langle \mathcal{O}_1^H[^3P_2] \rangle \left(\mathcal{O}(\alpha_s^2) \right)$	

 $\Delta_8^H = \langle \mathcal{O}_8^H[{}^1S_0] \rangle + \frac{3}{m_c^2} \langle \mathcal{O}_8^H[{}^3P_0] \rangle + \frac{4}{5m_c^2} \langle \mathcal{O}_8^H[{}^3P_2] \rangle$

Н	$\langle \mathcal{O}_1^H[{}^3S_1] \rangle$	$\langle \mathcal{O}_1^H[^3P_0] \rangle / {m_c}^2$	$\langle \mathcal{O}_8^H[^3S_1] \rangle$	Δ_8^H
J/ψ	1.16		$6.6 imes 10^{-3}$	3×10^{-2}
$\psi(2S)$	0.76		4.6×10^{-3}	5.2×10^{-3}
χ_{c0}		0.044	3.2×10^{-3}	

color-singlet (CS) LDMEs color-octet (CO) LDMEs

Determined by fit of proton- and pion-induced data

$$\sigma_{J/\psi} = \sigma_{J/\psi}^{direct} + Br(\psi(2S) \to J/\psi X)\sigma_{\psi(2S)} + \sum_{J=0}^{2} Br(\chi_{cJ} \to J/\psi \gamma)\sigma_{\chi_{cJ}}$$

9

Rapidity Distributions PRC 61, 035203 (2000)

10

One Possible measurement RpA (Jpsi/psi')

- The GG fusion process is the dominant channel for charmonium production at high energies.
- If both pA and pp data are taken at the same CMS energy, the comparison of them could be used to probe the nuclear gluon density.

$$\frac{\sigma_{pA}(\sqrt{s_{NN}})}{\sigma_{pp}(\sqrt{s_{NN}})}(y) \propto \frac{1}{A} \frac{f_G^A(x,\mu^2)}{f_G^p(x,\mu^2)}$$

The RpA (Upsilon) is more sensitive to the valence/sea parts of nPDFs.

Pion PDFs

- Drell-Yan: $\pi^{\pm}p \rightarrow \mu^{+}\mu^{-}X$ (LO: sensitive to valence quarks)
 - LO: $q\overline{q} \rightarrow \mu^+\mu^-$
 - NLO: $q\bar{q} \rightarrow \mu^+ \mu^- G$, $qG \rightarrow \mu^+ \mu^- q$ (large p_T)
 - NNLO: $q\bar{q}G \rightarrow \mu^+\mu^-G$, $qG \rightarrow \mu^+\mu^-qG$, $GG \rightarrow \mu^+\mu^-q\bar{q}$
- Direct photon: $\pi^{\pm}p \rightarrow \gamma X$ (LO: sensitive to gluons)
 - LO: $q\overline{q} \rightarrow \gamma G$, $qG \rightarrow \gamma q$
- Jpsi: $\pi^{\pm}p \rightarrow J/\psi X$ (LO: sensitive to gluons)
 - LO: $q\overline{q} \rightarrow c\overline{c} \rightarrow J/\psi X$, $GG \rightarrow c\overline{c} \rightarrow J/\psi X$
 - NLO: $q\bar{q} \rightarrow c\bar{c}G \rightarrow J/\psi X$, $GG \rightarrow c\bar{c}G \rightarrow J/\psi X$, $qG \rightarrow c\bar{c}q \rightarrow J/\psi X$
- Leading neutron (LN) electroproduction: Sullivan processes from a nucleon's pion cloud

n(k')

m

p(k)

	PDF	$\int_0^1 x \bar{u}_{\rm val}(x) dx$	$\int_0^1 x \bar{u}_{\text{sea}}(x) dx$	$\int_0^1 x G(x) dx$
	OW	0.203	0.026	0.487
Pinn PDFe	ABFKW	0.205	0.026	0.468
	SMRS	0.245	0.026	0.394
	GRV	0.199	0.020	0.513
	JAM ^a	0.225 ± 0.003	0.028 ± 0.002	0.365 ± 0.016
$O^2 - 9.6 \text{ GeV}^2$	xFitter ^a	0.228 ± 0.009	0.040 ± 0.020	0.291 ± 0.119
x 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0		-SMRS -GRV -KFitter JAM	10 1 10 ⁻¹ 10 ⁻²	- SMRS - GRV - xFitter - JAM
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		xG(x)/xG ^{GRV} (x)	10	

0

0

0.2

0.6

0.8

0.4

0.5

The gluon distributions of SMRS and GRV are significantly larger than JAM and xFitter for x>0.1.

0.4

0.6

0.8

1

Х

0.5

0.8

1

Х

0

0

0.2

 $xq_{val}(x)/xq_{val}^{GRV}(x)$

0.5

0

0

0.2

0.4

0.6

1

Х

Pion's PDFs are much less determined than proton's.

Theoretical Models of Pion/Kaon PDFs

- Nambu–Jona-Lasinio (NJL) model: PRC 94, 035201 (2016); PRD 105, 034021, (2022)
- Chiral constituent quark model: PRD 86, 074005 (2012); PRD 97, 074015 (2018); 2302.05566
- **Dyson-Schwinger Equations (DSE):** PRD 93, 074021 (2016); PRD 93, 054029 (2018); PRL 124, 042002 (2020); EPJC (2020) 80:1064
- Light-front & Holographic QCD: PRD 101, 034024 (2020); PRD 106, 034003 (2022); PRD 107, 114023 (2023)
- Maximum Entropy Input: EPJC (2021) 81:302

Parton-distribution functions for the pion and kaon in the gauge-invariant nonlocal chiral-quark model [Seung-il Nam, PRD 86, 074005 (2012)]

Model constructed at an initial scale Q_0

LQCD: Pion Momentum Fractions [Alexandrou et al., PRL 127, 252001 (2021)]

TABLE I. Compilation of results and comparison to literature. All values are at 2 GeV in the \overline{MS} scheme.

		E RQCD	JAM	xFitter :
	This work	[20]	[45]	[46]
$\langle x \rangle_l^R$)	0.601(28)(_21)			
$\langle x \rangle_s^R$	$0.059(13)(_{-10})$		•••	
$\langle x \rangle_c^R$	$0.019(05)(_{-10})$		•••	
$\langle x \rangle_g^R$	$0.52(11)(^{+02})$		0.42(4)	0.25(13)
$\Sigma_f \langle x \rangle_f^R$	$0.68(05)(_{-03})$	0.220(207)	0.58(9)	0.75(18)
$\langle x \rangle_{u+d-2s}^R$	0.48(01)	0.344(28)		
$\langle x \rangle_{u+d+s-3c}^{R}$	0.60(03)			

The gluon momentum fraction from LQCD is larger than those of JAM and xFitter.

LQCD: Pion Valence PDFs [Gao et al., PRL 128, 142003 (2022)]

x

LQCD: Pion Momentum Fractions [Gao et al., PRD 106, 114510 (2022)]

LQCD: Pion Gluon PDFs [Z. Fan, H-W Lin, PLB 823, 136778 (2021)]

NYCU Lattice QCD Efforts

Pion DAs from a heavy-quark OPE

2111.14563

PHYSICAL REVIEW D 104, 074511 (2021)

PHYSICAL REVIEW D 105, 034506 (2022)

Parton physics from a heavy-quark operator product expansion: Formalism and Wilson coefficients

William Detmold⁰,^{1,2,*} Anthony V. Grebe⁰,^{1,†} Issaku Kanamori⁰,^{3,‡} C.-J. David Lin⁰,^{4,5,§} Robert J. Perry⁰,^{4,∥} and Yong Zhao^{6,7,¶}

(HOPE Collaboration)

 ¹Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
 ²The NSF AI Institute for Artificial Intelligence and Fundamental Interactions ³RIKEN Center for Computational Science, Kobe 650-0047, Japan
 ⁴Institute of Physics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
 ⁵Centre for High Energy Physics, Chung-Yuan Christian University, Chung-Li 32032, Taiwan
 ⁶Physics Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
 ⁷Physics Department, Brookhaven National Laboratory, Building 510A, Upton, New York 11973, USA

2311.01322

Lattice QCD Constraints on the Fourth Mellin Moment of the Pion Light Cone Distribution Amplitude using the HOPE method

William Detmold,^{*a,b*} Anthony V. Grebe,^{*a,c*} Issaku Kanamori,^{*d*} C.-J. David Lin,^{*c,f*} Robert J. Perry^{g,*} and Yong Zhao^{*b*} for the HOPE Collaboration

^a Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

^bThe NSF AI Institute for Artificial Intelligence and Fundamental Interactions

^cTheoretical Physics Department, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60410, USA

^dRIKEN Center for Computational Science, Kobe 650-0047, Japan

^eInstitute of Physics, National Yang Ming Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan ^fCentre for High Energy Physics, Chung-Yuan Christian University, Chung-Li, 32032, Taiwan See also:

^f Centre for High Energy Physics, Chung-Yuan Christian University, Chung-Li, 32032, Taiwan ⁸Departament de Física Quàntica i Astrofísica and Institut de Ciències del Cosmos, Universitat de Barcelona, Martí Franquès I, E08028, Spain

^hPhysics Division, Argonne National Laboratory, Lemont, IL 60439, USA

Parton physics from a heavy-quark operator product expansion: Lattice QCD calculation of the second moment of the pion distribution amplitude

William Detmold[•],^{1,2,*} Anthony V. Grebe[•],^{1,†} Issaku Kanamori,^{3,*} C.-J. David Lin[•],^{4,5,6,§} Santanu Mondal[•],^{7,I]} Robert J. Perry[•],^{4,5,*} and Yone Zhae[•],^{8,**}

(HOPE Collaboration)

¹Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
²The NSF AI Institute for Artificial Intelligence and Fundamental Interactions, Cambridge, Massachusetts 02139, USA
³RIKEN Center for Computational Science, Kobe 650-0047, Japan
⁴Institute of Physics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
⁵Centre for Theoretical and Computational Physics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
⁶Centre for High Energy Physics Chung-Yung Christing University, Chung-Li 32032, Taiwan

⁶Centre for High Energy Physics, Chung-Yuan Christian University, Chung-Li, 32032, Taiwan ⁷Los Alamos National Laboratory, Theoretical Division T-2, Los Alamos, New Mexico 87545, USA ⁸Physics Division, Argonne National Laboratory, Lemont, Illinois 60439, USA

The lattice extraction of the TMD soft function using the auxiliary field representation of the Wilson line

Pion-induced J/psi Production - Fixed-target Experiments

Paper	Reference	Year	Collab	E	sqrt(s)	Beam	Targets	
-				(GeV)	(GeV)		-	
Fermilab								:
Branson	PRL 23, 1331	1977	Princ-Chicago	225	20.5	π-, π+, p	C, Sn	
Anderson	PRL 42, 944	1979	E444	225	20.5	π-, π+, К+, р, ар	C, Cu, W	COMPASS 2015 NH data
Abramov	Fermi 91-062-E	1991	E672/E706	530	31.5	π-	Be	\sim Large J/ψ cross sections! Cowin Ass 2019 Min ₃ data
Kartik	PRD 41, 1	1990	E672	530	31.5	π-	C, AL, Cu, Pb	10 ³ μ //ψ (MC)
Katsanevas	PRL 60, 2121	1988	E537	125	15.3	π-, ар	Be, Cu, W	Ο ψ' (MC)
Akerlof	PR D48, 5067	1993	E537	125	15.3	π-, ар	Be, Cu, W	The second secon
Antoniazzi	PRD 46, 4828	1992	E705	300	23.7	π-, π+	Li	O Total MC + Comb. backgroun
Gribushin	PR D53, 4723	1995	E672/E706	515	31.1	π-	Be	
Koreshev	PRL 77, 4294	1996	E706/E672	515	31.1	π-	Be	
								g 10°
CERN							_	Drell-Yan Drell-Yan
Abolins	PLB 82, 145	1979	WA11/Goliath	n 150	16.8	π-	Be	10 〒 🏹 🔪 🎬 🍟
McEwen	PLB 121, 198	1983	WA11	190	18.9	π-	Be	E , N. S. I.
Badier	Z.Phys. C20, 101	1983	NA3	150	16.8	π-, π+, K-, K+, p, ap	H, Pt	
		1983	NA3	200	19.4	π-, π+, K-, K+, p, ap	H, Pt	4 0 8 10
		1983	NA3	280	22.9	π-, π+, K-, K+, p, ap	H, Pt	COMPASS, PRL 119 (2017) 112002 $ m M_{uu}~(GeV/c$
Corden	PLB 68, 96	1977	WA39	39.5	8.6	π-, π+, K-, K+, p, ap	Cu	
Corden	PLB 96, 411	1980	WA39	39.5	8.6	π-, π+, K-, K+, p, ap	w	
Corden	PLB 98, 220	1981	WA39	39.5	8.6	π-, π+, K-, K+, p, ap	p	
Corden	PLB 110, 415	1982	WA40	39.5	8.6	π-, π+, К-, К+, р, ар	р, W	
Alexandrov	NPB 557.3	1999	Beatrice	350	25.6	π-	Si, C, W	

Color evaporation model (CEM)

Phys. Rev. D 102, 054024 (2020); arXiv: 2006.06947

PHYSICAL REVIEW D 102, 054024 (2020)

Constraining gluon density of pions at large x by pion-induced J/ψ production

Wen-Chen Chang[®] Institute of Physics, Academia Sinica, Taipei 11529, Taiwan

Jen-Chieh Peng

Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

Stephane Platchkov® IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France

Takahiro Sawada[®] Department of Physics, Osaka City University, Osaka 558-8585, Japan

(Received 12 June 2020; accepted 8 September 2020; published 24 September 2020)

The gluon distributions of the pion obtained from various global fits exhibit large variations among them. Within the framework of the color evaporation model, we show that the existing pion-induced J/w

Data vs. CEM NLO: $\sigma(\sqrt{s})$

 $\pi^- + N \rightarrow Jpsi + X$

Dominant process: Threshold- qqbar High energies- GG

Data vs. CEM NLO

 $[\pi^- + Be \rightarrow Jpsi + X \text{ at 515 GeV, PRD 53, 4723 (1996)}]$

Data favor SMRS and GRV PDFs with larger gluon densities at x > 0.1.

Data vs. CEM Calculations

TABLE III. Results of F factor and χ^2 /ndf value of the best fit of the NLO CEM calculations for SMRS, GRV, xFitter, and JAM pion PDFs to the data listed in Table II. The F* factor and χ^2 /ndf* are the ones corresponding to the fit with inclusion of PDF uncertainties for xFitter and JAM.

Data	SMRS		GRV		xFitter				JAM			
Experiment (P_{beam})	F	χ^2/ndf	F	χ^2/ndf	F	F^*	χ^2/ndf	χ^2/ndf^*	F	F^*	χ^2/ndf	χ^2/ndf^*
E672, E706 (515)	0.040	1.2	0.040	2.2	0.063	0.063	6.8	4.7	0.081	0.081	18.9	18.5
E705 (300)	0.052	2.3	0.053	1.9	0.073	0.076	3.2	1.3	0.086	0.086	16.1	15.9
NA3 (280)	0.046	1.5	0.049	2.0	0.067	0.069	5.0	3.2	0.081	0.081	10.4	10.3
NA3 (200)	0.046	2.1	0.050	2.2	0.065	0.066	5.0	1.3	0.081	0.081	7.7	7.6
WA11 (190)	0.054	5.0	0.058	7.2	0.078	0.076	19.4	6.2	0.091	0.091	73.7	72.9
NA3 (150)	0.065	1.1	0.071	1.0	0.089	0.091	2.6	1.6	0.108	0.108	3.9	3.8
E537 (125)	0.044	1.5	0.049	1.5	0.065	0.065	3.1	1.4	0.083	0.083	3.5	3.5
WA39 (39.5)	0.068	1.3	0.079	1.4	0.073	0.072	1.1	0.8	0.080	0.080	1.2	1.2

- The hadronization F factor is stable across energy.
- High-energy J/ ψ data have a large sensitivity to the large-x gluon density of pions.
- The valence-quark distributions plays a minor role if away from the threshold.
- CEM NLO calculations favor SMRS and GRV PDFs whose gluon densities at x > 0.1 are higher, compared with xFitter and JAM PDFs.

Are these observations model dependent?

NRQCD for Jpsi

• PYTHIA 6 or 8:

NLO; results hard to understand...

- PRD 54, 2005 (1996): LO; theoretical expressions available
- NPB 514 (1998) 245; PLB 638 (2006) 202: NLO; (complicated) theoretical expressions available, but open source codes are not available

Non-relativistic QCD model (NRQCD)

Chin.J.Phys. 73 (2021) 13; arXiv: 2103.11660

NRQCD analysis of charmonium production with pion and proton beams at fixed-target energies

Chia-Yu Hsieh ^{a,b,1}, Yu-Shiang Lian ^{a,c,1}, Wen-Chen Chang ^{a,*}, Jen-Chieh Peng ^d, Stephane Platchkov ^e, Takahiro Sawada ^f

^a Institute of Physics, Academia Sinica, Taipei 11529, Taiwan

^b Department of Physics, National Central University, 300 Jhongda Road, Jhongli 32001, Taiwan

^c Department of Physics, National Kaohsiung Normal University, Kaohsiung County 824, Taiwan

^d Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

^e IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France

f Department of Physics, Osaka City University, Osaka 558-8585, Japan

ARTICLE INFO

Keywords: Charmonium production Pion PDFs NRQCD Color-octet matrix elements Gluon

ABSTRACT

We present an analysis of hadroproduction of J/ψ and $\psi(2S)$ at fixed-target energies in the framework of non-relativistic QCD (NRQCD). Using both pion- and proton-induced data, a new determination of the color-octet long-distance matrix elements (LDMEs) is obtained. Compared with previous results, the contributions from the $q\bar{q}$ and color-octet processes are significantly enhanced, especially at lower energies. A good agreement between the pion-induced J/ψ production data and NRQCD calculations using the newly obtained LDMEs is achieved. We find that the pion-induced charmonium production data are sensitive to the gluon density of pions, and favor pion PDFs with relatively large gluon contents at large *x*.

$\pi^-+N \rightarrow Jpsi+X: pion PDFs$

Non-relativistic QCD model (NRQCD)

Phys. Rev. D 107, 056008 (2023); arXiv: 2209.04072

PHYSICAL REVIEW D 107, 056008 (2023)

Fixed-target charmonium production and pion parton distributions

Wen-Chen Chang[®],¹ Jen-Chieh Peng,² Stephane Platchkov[®],³ and Takahiro Sawada[®]

¹Institute of Physics, Academia Sinica, Taipei 11529, Taiwan

²Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA ³IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France ⁴Nambu Yoichiro Institute of Theoretical and Experimental Physics, Osaka Metropolitan University,

Osaka 558-8585, Japan

(Received 8 September 2022; accepted 31 January 2023; published 7 March 2023)

We investigate how charmonium hadroproduction at fixed-target energies can be used to constrain the gluon distribution in pions. Using nonrelativistic QCD (NRQCD) formulation, the J/ψ and $\psi(2S)$ cross sections as a function of longitudinal momentum fraction x_F from pions and protons colliding with light targets, as well as the $\psi(2S)$ to J/ψ cross section ratios, are included in the analysis. The color-octet long-distance matrix elements are found to have a pronounced dependence on the pion parton distribution functions (PDFs). This study shows that the x_F differential cross sections of pion-induced charmonium production impose strong constraints on the pion's quark and gluon PDFs. In particular, the pion PDFs with larger gluon densities provide a significantly better description of the data. It is also found that the production of the $\psi(2S)$ state is associated with a larger quark-antiquark contribution, compared with J/ψ .

Data (Jpsi, psi') vs. NRQCD

We can achieve a reasonable description of the charmonium data with the proton and pion beams by NRQCD calculations with similar LDMEs obtained in Chin. J. Phys. 73 (2021) 13.

31

Data vs. NRQCD

 $[\pi^- + Be \rightarrow Jpsi + X \text{ at } 515 \text{ GeV}, \text{ PRD } 53, 4723 \text{ (1996)}]$

Data favor SMRS and GRV PDFs with larger gluon densities at x > 0.1.

Data vs. NRQCD

 $[\pi^- + W \rightarrow Jpsi/psi' + X \text{ at } 252 \text{ GeV, PRD 44, 1909 (1991)}]$

Data favor SMRS and GRV PDFs with larger gluon densities at x > 0.1.

Data vs. NRQCD Calculations

Data	SMRS		GRV			JAM	xFitter		
Exp	χ^2 /ndp	F							
E672, E706 ($\sigma^{J/\psi}$)	1.3	0.80 ± 0.01	2.6	0.79 ± 0.01	6.1	1.14 ± 0.01	4.2	1.08 ± 0.02	
E705 $(\sigma^{J/\psi})$	2.0	0.98 ± 0.02	1.7	0.96 ± 0.02	4.1	1.19 ± 0.01	2.6	1.18 ± 0.01	
NA3 $(\sigma^{J/\psi})$	2.1	0.86 ± 0.02	2.3	0.87 ± 0.02	2.7	1.00 ± 0.02	2.9	1.01 ± 0.02	
NA3 $(\sigma^{J/\psi})$	1.3	0.87 ± 0.02	0.9	0.89 ± 0.02	1.8	0.92 ± 0.02	1.5	0.95 ± 0.02	
WA11 $(\sigma^{J/\psi})$	3.7	1.02 ± 0.02	8.5	1.02 ± 0.02	29.9	1.09 ± 0.01	22.0	1.12 ± 0.02	
NA3 $(\sigma^{J/\psi})$	1.6	1.24 ± 0.03	1.3	1.23 ± 0.03	1.5	1.10 ± 0.02	1.6	1.18 ± 0.03	
E537 $(\sigma^{J/\psi})$	3.3	0.88 ± 0.00	1.6	0.88 ± 0.01	2.6	0.88 ± 0.00	2.1	0.88 ± 0.01	
WA39 $(\sigma^{J/\psi})$	1.4	1.30 ± 0.04	1.4	1.18 ± 0.07	2.9	0.70 ± 0.00	1.3	0.70 ± 0.05	
E672, E706 ($\sigma^{\psi(2S)}$)	0.2	0.80 ± 0.01	0.2	0.79 ± 0.01	0.3	1.14 ± 0.01	0.2	1.08 ± 0.02	
E615 $(\sigma^{\psi(2S)}/\sigma^{J/\psi})$	1.6	1 ± 0	1.7	1 ± 0	5.0	1 ± 0	4.3	1 ± 0	
HERA-B $(\sigma^{\psi(2S)}/\sigma^{J/\psi})$	1.4	1 ± 0	1.5	1 ± 0	1.2	1 ± 0	1.2	1 ± 0	
NA50 $(\sigma^{\psi(2S)}/\sigma^{J/\psi})$	1.0	1 ± 0	1.6	1 ± 0	1.3	1 ± 0	1.1	1 ± 0	
E789 $(\sigma^{\psi(2S)}/\sigma^{J/\psi})$	3.1	1 ± 0	3.3	1 ± 0	2.8	1 ± 0	2.9	1 ± 0	
E771 ($\sigma^{\psi(2S)}/\sigma^{J/\psi}$)	0.3	1 ± 0							
E705 $(\sigma^{J/\psi})$	2.3	1.20 ± 0.00	2.2	1.20 ± 0.00	5.7	1.20 ± 0.00	3.1	1.20 ± 0.00	
NA3 $(\sigma^{J/\psi})$	1.0	1.00 ± 0.01	1.2	1.00 ± 0.01	1.9	1.00 ± 0.01	1.6	1.00 ± 0.01	

NRQCD calculations favor SMRS and GRV PDFs whose gluon densities at x > 0.1 are higher, compared with xFitter and JAM PDFs.

EIC Scope

IR-8

Project Design Goals

- High Luminosity: L= 10³³ 10³⁴cm⁻²sec⁻¹, 10 – 100 fb⁻¹/year
- Highly Polarized Beams: 70%
- Large Center of Mass Energy Range: E_{cm} = 29 - 140 GeV
- Large Ion Species Range: protons Uranium
- Large Detector Acceptance and Good Background Conditions
- Accommodate a Second Interaction Region (IR)

p/A beam p: 41 GeV, 100 to 275 GeV s://indco2.riken.jp/event/4385444444 cons/20372/detechments/11865/17180/EIC Science and Project Status EIC*Asia.pptx Electron-Ion Collider 35

EIC: Tagged processes of DIS/Jpsi

Year >2030

Physics Objects for Pion/Kaon Structure Studies

□ Sullivan process – scattering from nucleon-meson fluctuations

Detect "tagged" neutron/lambda

https://indico.bnl.gov/event/8315/contributions/36990/attachments/28487/43882/CFNS-Pion-Kaon-Structure-Horn-nbk.pdf https://arxiv.org/abs/1907.08218 36

EIC: Sullivan Process

Year >2030

Pion and Kaon Sullivan Process

 \Box Recent theoretical calculations found that for $-t \leq 0.6$ GeV², all changes in pion structure are modest so that a well-constrained experimental analysis should be reliable Similar analysis for the kaon indicates that Sullivan processes can provide a valid kaon target for $-t \le 0.9 \text{ GeV}^2$

[S.-X. Qin, C. Chen, C. Mezrag and C. D. Roberts, Phys. Rev. C 97 (2018) 015203.]

https://indico.bnl.gov/event/8315/contributions/36990/attachments/28487/43882/CFNS-Pion-Kaon-Structure-Horn-nbk.pdf 37 https://arxiv.org/abs/1907.08218

12

EIC: Sullivan Process

Year >2030

EIC Far-Forward Detector

https://indico.cern.ch/event/971469/contributions/4107843/attachments/2152646/3630025/EIC_PIK_EHM_AMBER_CERN_113020.pdf https://indico.bnl.gov/event/11322/contributions/50283/attachments/35094/57075/RHIC_AGS_Users_meeting_2021_Alex_Jentsch_v2.pdf_38

EIC: Sullivan Process

Year >2030

Meson Structure: Summary of EIC Detector Requirements

- Lower energies (5 on 41, 5 on 100) require at least 60 x 60 cm²
- > For all energies, the neutron detection efficiency is 100% with the planned ZDC
- **Given For** π **-n and K**⁺/ Λ **:**
 - > All energies need good ZDC angular resolution for the required -t resolution
 - > High energies (10 on 100, 10 on 135, 18 on 275) require resolution of 1cm or better

\square K⁺/ Λ benefits from low energies (5 on 41, 5 on 100) and also need:

- > Λ →n+ π ⁰ : additional high-res/granularity EMCal+tracking before ZDC seems doable
- > $\Lambda \rightarrow p + \pi^{-}$: additional trackers in opposite direction on path to ZDC more challenging
- Standard electron detection requirements
- Good hadron calorimetry for good x resolution at large x

https://indico.bnl.gov/event/8315/contributions/36990/attachments/28487/43882/CFNS-Pion-Kaon-Structure-Horn-nbk.pdf https://arxiv.org/abs/1907.08218, https://arxiv.org/abs/2102.11788

EIC Asia Workshop

- 16 Mar 2023, 07:00 → 18 Mar 2023, 13:30 Asia/Tokyo
- Okochi-hall (Bldg C32) (RIKEN)
- Ralf Seidl (RIKEN), Taku Gunji (Center for Nuclear Study, the University of Tokyo), Yuji Goto (RIKEN)

ePIC ZDC – Simulation

- ZDC simulation updated
 - Upstream modules with smaller lateral size to fit between beam pipes
 - Overall length about 183 cm, within 2m limit
 - More cost effective, Pb-Silicon module removed
 - HCAL resolution improved
- Base design, meets the resolution requirement

ePIC ZDC Prototype with LYSO Crystals

 Aim to have a beam test at <u>Tohoku University</u> in February 2024 to compare the performance between the LYSO and PbWO₄ crystals

Standalone ZDC ECAL Simulation with LYSO Crystals

- For the beam test in February 2024
- 900 MeV positron beam
- Various optical properties in the G4 simulation are being studied

EIC-Asia workshop in Taiwan

https://indico.phys.sinica.edu.tw/event/88/

EIC-Asia Workshop

29–31 Jan 2024 National Cheng Kung University Asia/Taipei timezone

Enter your search term

Q

Overview

Timetable

Contribution List

Following the previous EIC-Asia workshops in Korea (2022) and Japan (2023), we are organizing a third one at National Cheng Kung University, Tainan, Taiwan during January 29-31, 2024. The main goal of this Workshop is to discuss in depth the physics opportunities and related experimental activities of the upcoming U.S. Electron-Ion Collider (EIC), with an emphasis on collaboration among Asian colleagues.

There are no materials yet.

National Cheng Kung University

No.1, University Road, Tainan City 701, Taiwan (R.O.C) Go to map

 $\boldsymbol{\rho}$

Summary

- Light meson partonic structures are mostly determined by Drell-Yan process, supplemented by the other data of prompt-photon, charmonium production and the DIS Sullivan process.
- Lattice QCD makes significant progress in predicting the pion/kaon PDFs. Recent studies show that the large-x gluon strengths of modern xFitter and JAM pion PDFs seem too weak to describe both data sets of pion- and kaon-induced Jpsi production.
- Via the tagged-DIS, the future EIC shall significantly improve our knowledge of pion/kaon PDFs. The far-forward detectors are essential for this measurement. Asia EIC team are working on this project.
- The measurement of R_{pa} of Jpsi/psi' by sPHENIX could be used to explore the gluon density of nuclear PDFs.