

Valve Box Repair Mechanical Engineering

Russell Feder for the 1004B valve box repair engineering team

11/28/23

Lead pot "A" "TBD" feedthrough piping damage

This feedthrough is part of the M-line pressure boundary and the valve box pressure boundary

Copper from the melted current lead re-deposited on inside of feedthrough flange

For more information on the causal analysis and electrical events that lead to this damage → Talks coming up next by Jon Sandberg, Chaofeng Mi, and John Escalier

Lead pot "A" "TBD" feedthrough repair design

- Design and parts sourcing: Harlan Lovera and Richard Muscolino, CA-D engineering
- Parts sourcing and fabrication: The Cryo Group mechanical team

Lead pot "A" "TBD" feedthrough repair

Repair completed 11/18 with successful pressure test

National Laboratory

Tom Wozniak, Jeff Stewart, Nick Stivala

5

M-Line Design and Test Pressure

- <u>Operating Pressure</u>: 58 psi (4 bar)
- Spare 12X150 Current Lead and Repaired M-line <u>Test pressure</u>: 120 psi (8 bar)
- But...By design, M-line reliefs are set to 250 psi (17.2 bar)
- <u>Only have one 12x150 spare</u> \rightarrow Protect fragile ceramic feedthroughs
- Need to reconcile this \rightarrow Get written approval for variation before March, 2024 restart

West Schultzers 1148 also

To: Tuozzolo, Joseph E: Feder, Russelt, Warkentien, Andreas F: Than, Yahning (Roberto): Witzniak, Thomas J: Sandzinski, Mark A

taps, Sphenix taps, Snake removal/dummy install. Typically, we would go to about 8 atm and sniff all new welds.

Since the 2011 loss of cooling water incident when several ceramic feedthroughs failed at or below relief valve pressure, we have never

brought the M-line or the RUSH lines up to relief value pressure for pressure checking any repairs or modifications like diodes repairs or DX

Final Pressure Test: M, S, and H-lines from the 1004B valve box to the 1006B valve box

• Need to close all splice cans at 4:00 to test repairs at 1004B (and visa versa)

12X150 current lead and pressure test pipe FEA check

- FEA at (A) 120 psi (8 atm) internal test pressure and at (B) 300 psi internal pressure
- M-line typically operates at 4 bar, 58 psi
- Allowable stress = 16,700 psi

Lead Pot and 12X150 current lead FEA

- Use FEA to verify performance of the lead pot and feedthrough design, and new interface welding flange
- Lead pots are suspended from inside of valve box with ¼" threaded rod. The gravity load is shared by threaded rod, feedthrough bellows, and M-line pipe stiffness. Not enough detail in this model to demonstrate all of that.
- Did not include contraction from 300K to 4K, assumed everything modeled is at the same temperature

Refined mesh around feedthrough repair

Lead Pot and 12X150 current lead FEA

- Stress around repaired feedthrough including the new weld interface flange are well below the allowable for the 300 psi internal pressure case. Normal operating pressure is 58 psi.
- Allowable stress: 16.7 ksi, 115 MPa

Valve Box Manhole Cover O-rings

- O-ring froze and cracked in three places after inundation of cold helium from the feedthrough rupture above
- Despite the unexpected seal failure, we are not changing the design or O-ring material
- 6.5mm OD manhole cover Viton o-ring froze, cracked, and leaked due to bath of very cold helium gushing from ruptured feedthrough
- We found three cracks of about 2 mm width in the o-ring
- This failure mode was not part of original ODH modeling...neither
 was the ruptured bellows
- Considered using silicone and we tested viton, buna-N and silicone dipped in LN2. All became brittle and cracked.
- Installing new viton o-rings
- For EIC, consider designing shroud or umbrella that diverts?
- With ASE update and service building ODH systems joining RHIC credited controls, don't need to upgrade.

Valve box insulating vacuum relief valve worked as designed

• Verified lift valve performance by dismantling and measuring properties in the Cryo shop

Spring constant [lbs/inch]	85.0
Pre-Load force [lbs]	95.6
Relief set point [PSIG]	1.8
Required Pressure to fully open valve [PSIG]	1.9
Installed relief valve dia [Inch]	6.4
Maximum Pressure buildup in Valve box [PSIG]	3.7
Relief Pressure [PSIA]	18.4

Shown upside down sitting on bench in Cryo shop

1004B Blue Valve Box Repair

Repair Step	Status and notes					
Weld in new "TBD" feedthrough tube and bellows, pressure test	Complete					
Insert, connect, and testing of spare 12X150 current lead	Start week after Thanksgiving					
Internal and external electrical work and testing	 Electrical team is also working on 4:00 DX splice joints 					
Weld lead pots closed	 Finish no later than 12/22 					
M-line pressure test from 1004B to 4:00	Key step. Need to wait for DX splice cans to be closed. <i>Enables start of Cryo scrub.</i>					
Complete MLI and thermal shield installation, other housekeeping	Finish no later than 1/17/24					
Re-set relief valve, close manhole covers, pump down	Finish no later than 1/17/24					
Brookhaven National Laboratory						

Conclusion: 1004B Blue Valve Box Mechanical Repairs

- 1. The mechanical work to repair the 1004B blue valve box is well understood and includes:
 - Designing, fabricating, and installing a new lead-pot "A" feedthrough at the "TBD" position → Complete
 - 2. Preparing and installing the spare 12X150 current lead and reconnecting all internal cables
 - 3. <u>Key-step</u> → Welding closed the lead pots and pressure-testing the repaired blue M-line pipe run from 1004B to 4:00, including the closed DX magnet M-line splice cans.
 - 4. Cleaning out and resetting the valve box lift-plate relief valve and relief line
 - 5. Re-wrapping MLI and re-installing thermal shields and the manhole covers with new o-ring seals
 - 6. Pumping down the valve box to re-establish insulating vacuum.
- 2. Work planning for worker *safety* is an important part of this repair
 - 1. Partnered with ES&H to manage hazards, implement LOTO and confined space controls, and ensure the various repair teams have current training and hazard awareness
 - 2. Working inside the valve box confined space \rightarrow last entered 20 years ago
- 3. The Cryo Group mechanical engineering team also performed a bottoms-up ODH analysis of RHIC service buildings
 - 1. Modeling the mechanics and probabilities of all possible leaks, including the manhole cover frozen o-ring leak and ruptured feedthrough bellows leak cases
 - 2. There is no change to the valve box manhole cover o-ring design or material because the ODH hazard is covered by the ASE service building credited controls update.
 - See following talk by Ray Fliller

Backup material

Other design references

ASME B31.3-2018

Table A-1 Basic Allowable Stresses in Tension for Metals (Cont'd)

Numbers in Parentheses Refer to Notes for Appendix A Tables; Specifications Are ASTM Unless Otherwise Indicated

											Specified Min. Strength, ksi		Basic Allowable Stress, S, ksi, at Metal Temperature, <u>°F [Note (1)]</u>			a t ire,
	Nominal Composition	Product Form	Spec. No.	Type/ Grade	UNS No.	Class/ Condition/ Temper	Size, in.	P-No. (5)	Notes	Min. Temp., °F (6)	Tensile	Yield	Min. Temp. to 100	200	300	400
Stainless Steel — Pipes and Tubes (3)(4a)																
	18Cr-10Ni-Ti	Smls. pipe	A312	TP321	S32100		>3/8 thk.	8	(28)	-425	70	25	16.7	16.7	16.7	16.7
	18Cr-10Ni-Ti	Smls. pipe	A376	TP321	S32100		>¾ thk.	8	(28)(36)	-425	70	25	16.7	16.7	16.7	16.7
l	18Cr-8Ni	Tube	A213	TP304L	S30403			8	(14)(36)	-425	70	25	16.7	16.7	16.7	15.8
	18Cr-8Ni	Tube	A269	TP304L	S30403			8	(14)(36)	-425	70	25	16.7	16.7	16.7	15.8
	18Cr-8Ni	Tube	A270	TP304L	S30403			8	(14)	-425	70	25	16.7	16.7	16.7	15.8
	18Cr-8Ni	Pipe	A312	TP304L	S30403			8		-425	70	25	16.7	16.7	16.7	15.8
	18Cr-8Ni	Pipe	A358	304L	S30403			8	(36)	-425	70	25	16.7	16.7	16.7	15.8

The ASME code B31.3 recommends allowable tensile stress levels in pipe materials. The equations used in B31.3 are

t = PD / (2 (SE + PY)) (1)

where

t = thickness of pipe (in)

P = internal pressure in pipe (psi)

D = outside diameter of pipe (in)

S = allowable tensile stress (psi)

E = quality factor for the piping according ASME 31.3

Y = wall thickness coefficient according ASME 31.3 (y = 0.5 for thin pipes and y < 0.5 for thick pipes

or

t = P (d + 2 c) / (2 (S E - P (1 - Y)))(2)

where

d = inside diameter of pipe (in)

c = sum of the mechanical allowances (thread or groove depth) plus corrosion and erosion allowances (in) - typical 0.02 in where tolerances are not specified

Eq. (1) can be rearranged to express allowable internal piping pressure as

p = 2 t S E / (D - 2 t Y) (1b)

Eq. (1b) can be modified to compensate for thinner pipes due to the thickness tolerances used by the industry.

- At the test pressure of 120 psi (8 atm), and using 16.7 ksi allowable, the minimum allowable 304L tube wall thickness is ~.018"
- The test apparatus tube wall is .065" 🙄
- The test apparatus tube wall is .028" ^(C)

RHIC Valve Box Lead Pots and Gas-Cooled Current Leads

RHIC Valve Box Power Leads Map

12D0

 $= XXXXXX \qquad \boxed{\begin{array}{c} XXXX \\ XXXXX \end{array}} = XXXXXXX$

Bellows details: New repair bellows properties

Bellows drawings

REVISION

Bellows details: New repair bellows properties *Richard Muscolino*

The new bellows appear to be a bit stiffer but there isn't any intention for movement once installed.

